FINAL REPORT

PRELIMINARY EVALUATION OF THE FEASIBILITY TO

 ARTIFICIALLY RECHARGETHE AQUIFER AT THE MVD-4 AND MVD-5 WELL FIELD MERRIMACK VILLAGE DISTRICT - MERRIMACK, NEW HAMPSHIRE

Presented to: Mr. Ron Miner, Jr. Merrimack Village District

EMERY \& GARRETT GROUNDWATER INVESTIGATIONS, A DIVISION OF GZA 56 Main Street | P.O. Box 1578 | Meredith, New Hampshire 03253

Emery \& Garrett Groundwater Investigations, A Division of GZA
 56 Main Street • P.O. Box 1578
 Meredith, New Hampshire 03253

www.eggi.com
Fax (603) 279-8717
(603) 279-4425

February 21, 2019

Mr. Ron Miner, Jr.
Merrimack Village District
2 Greens Pond Road
Merrimack, NH 03054

Dear Mr. Miner,

Please find enclosed a copy of Emery \& Garrett Groundwater Investigations (EGGI), report entitled, "Final Report, Preliminary Evaluation of the Feasibility to Artificially Recharge the Aquifer at the MVD-4 and MVD-5 Well Field, located in Merrimack, New Hampshire.

Based upon the results of this investigation, we believe that the use of Artificial Recharge is a very favorable means to enhance groundwater production, lessen treatment costs, and improve water quality at the Well Field.

I hope you find the information contained herein responsive to your needs. If you have any questions, please do not hesitate to contact either one of us.

Sincerely,

Daniel J. Tinkham, P.G. Senior Consultant

James M. Emery, P.G. Principal

Emery \& Garrett Groundwater Investigations,
 A Division of GZA

56 Main Street • P.O. Box 1578
Meredith, New Hampshire 03253
(603) 279-4425
www.eggi.com
Fax (603) 279-8717
FINAL REPORTPRELIMINARY EVALUATION OF THE FEASIBILITY TOARTIFICIALLY RECHARGETHE AQUIFER AT THE MVD-4 AND MVD-5 WELL FIELD
MERRIMACK VILLAGE DISTRICT, MERRIMACK, NEW HAMPSHIRE
February 2019

TABLE OF CONTENTS

Page

I. INTRODUCTION 1
II. EVALUATION OF THE AQUIFER AT THE MVD-4/5 WELL FIELD 2
A. Design of temporary Recharge Basin 2
B. Geochemical Investigation of Aquifer. 5
III. EVALUATE POTENTIAL TO USE WATER FROM BABOOSIC BROOK AND/OR THE MERRIMACK RIVER FOR ARTIFICIAL RECHARGE 8
IV. EVALUATION OF PERMITTING REQUIREMENTS 9
V. CONCLUSIONS/RECOMMENDATIONS 10
VI. LIMITATIONS 11
VII. REFERENCE 11

FIGURES

Figure $1 \quad$ Potential Pipeline Routes for Artificial Recharge near Wells MVD-4 and MVD-5
Figure 2 Groundwater Contours During Pumping Interval 4/12/16 MVD-4 and MVD-5
Figure 3 Test Pits, Monitoring Wells, and Potential Pipeline Locations for Potential Artificial Recharge Wells MVD-4 and MVD-5
Figure $4 \quad$ Potential Artificial Recharge Basin Locations near Wells MVD-4 and MVD-5

TABLES

Table I Geologic Descriptions of Test Pits - June 7, 2018 Artificial Recharge Evaluation
Table II Results of Laboratory Analyses of Water Quality Samples Leaching Tests near the MVD4/5 Well Field
Table III Results of Sampling for Per- and Polyfluorinated Alkyl Substances (PFAS) Table IV Results of Laboratory Analyses of Water Quality Samples Test Wells near the MVD-4/5 Well Field

APPENDICES

Appendix A Hydrogeologic Logs
Appendix B Percolation Test Analyses
Appendix C Leaching Tests
Appendix D Water Quality Results from Test Wells
Appendix E Water Quality Results from Surface Water

Emery \& Garrett Groundwater Investigations,

 A Division of GZAP.O. Box 1578-56 Main Street

Meredith, New Hampshire 03253
(603) 279-4425 (office)
www.eggi.com
(603) 279-8717 (fax)

FINAL REPORT
 PRELIMINARY EVALUATION OF THE FEASIBILITY TO ARTIFICIALLY RECHARGE THE AQUIFER AT THE MVD-4 AND MVD-5 WELL FIELD

MERRIMACK VILLAGE DISTRICT, MERRIMACK, NEW HAMPSHIRE
February 2019

I. INTRODUCTION

Production Wells MVD-4 and MVD-5 are high-yielding sand and gravel wells owned and operated by the Merrimack Village District (MVD) and comprise the MVD-4/5 Well Field. They are located in the northeastern section of Merrimack, New Hampshire, adjacent to the Merrimack River, north of the Souhegan River, and east of Route 3 (Figure 1). Emery \& Garrett Groundwater Investigations (EGGI), a Division of GZA, has evaluated the feasibility of utilizing local surface water sources to artificially recharge the Aquifer tapped by this well field, thereby increasing its overall withdrawal capacity.

As part of an investigation conducted in 2003, EGGI performed a long-term pumping test on both wells at a combined pumping rate of 876 gallons per minute (gpm) (1.26 million gallons per day (gpd)) (EGGI 2003). Results of the pumping test were used to define the Wellhead Protection Area (WHPA) and showed that natural recharge to this Aquifer cannot sustain long term pumping rates greater than 420 gpm (600,000 gpd) (Figure 2). Therefore, the MVD-4/5 Well Field would benefit from the addition of Artificial Recharge (AR), derived from a surface water source, to supplement natural groundwater recharge. The overall sustainable yield of the Aquifer could potentially be increased by applying Artificial Recharge to make up some (or all) of the difference between what the wells can pump (1.26 million gpd) and what the Aquifer can yield from natural recharge (600,000 gpd). ${ }^{1}$

In March 2016, elevated levels of per- and polyfluoroalkyl substances (PFAS) were discovered in the groundwater produced by Wells MVD-4 and MVD-5. Both wells were subsequently taken off-line, removing a significant portion of MVD's total supply capacity. ${ }^{2}$ Currently, design work is underway to construct a carbon treatment system to remove PFAS from the water produced from this well field. Additional recharge added to the Aquifer would serve to dilute existing concentrations of PFAS and likely decrease the unit cost for treatment of the water. Due to the urgency of providing treatment to Wells MVD-4 and MVD-5, this

[^0]artificial recharge investigation was conducted coincident with the preliminary design of the treatment plant.

This report contains the documentation and final results of our investigation and concludes that Artificial Recharge can be an important means of supplementing MVD's available groundwater supply capacity.

II. EVALUATION OF THE AQUIFER AT THE MVD-4/5 WELL FIELD

A. Design of Temporary Recharge Basins

1. Hydrogeologic Review and Siting of Potential Recharge Basins

EGGI reviewed published data and those collected during previous investigations to select areas that are likely to be hydrogeologically favorable for the infiltration of surface water into the subsurface via artificial recharge. Existing wells, distribution lines, and proposed locations for water treatment facilities restrict the available area within the site footprint. EGGI coordinated with the MVD and its engineers, Underwood Engineers of Concord, New Hampshire, to determine the areas on the property that are available for the installation and maintenance of artificial recharge basins.

Once the available space was considered and the hydrogeologic conceptual model updated with available data, ten test pit locations were identified in two primary areas: 1) in the abandoned sand \& gravel pit south of MVD-5 (Test Pits TP-1, TP-1A, TP-1B, and TP-1C); and 2) on the terrace west of Production Well MVD-5 (Test Pits TP-2, TP-3, TP-3A, TP-3B, TP-4, and TP-5 (Figure 3). A backhoe was used to install the test pits, generally reaching a total depth of approximately six feet below grade. A Professional Geologist was on site to log each Test Pit and collect representative samples from selected intervals (Table I).

Test Pit TP-1 and subsequent adjacent pits (TP-1A through TP-1C) all encountered shallow groundwater or wet soils at depths ranging from approximately four feet to seven feet below grade. Of course, under normal pumping conditions, the groundwater table in this area would be depressed from its natural non-pumping condition. Test Pits TP-1 and TP-1C penetrated clean, well-sorted sandy material below a silty top layer. TP-1A and 1B encountered very poorly-sorted material with silt layers that are not favorable for AR.

The near-surface stratigraphy was similar in each of the test pits installed on the terrace above Wells MVD-4 \& MVD-5. Generally, the logs indicate a fine to medium sand extending from the base of an organic soil layer to approximately 2.5 feet. Below 2.5 feet, the test pits encountered a medium to very coarse sand with some gravel (pebbles to cobbles).

The favorability of sediments for the installation of a recharge basin(s) was assessed by EGGI, particularly noting the grain-size distribution and degree of sorting of the intercepted material. This geologic assessment was further complemented with the in-situ testing of the near-surface sediment by conducting percolation tests (Perc tests) in the test pits.

2. Percolation Tests in Near-Surface Sediments

Percolation tests were conducted in TP-1, TP-2, TP-3, TP-4, and TP-5 (Figure 3 and Appendix A). Most of the Perc testing was completed at a depth of four feet below grade to avoid the need for shoring of the test pit walls to ensure the safety of the on-site geologist. Upon completion of the Perc testing, test pits were then deepened for continued sediment logging.

The Perc tests were conducted by pushing a bottomless 5-gallon bucket into the sand at the bottom of each pit to the one-gallon mark. Next, the buckets were filled with water and the cumulative time for each of three successive gallons of water to infiltrate into the subsurface was recorded (Table I). These data provide the basis for estimating infiltration rates below a future artificial recharge basin.

The ability of the subsurface material to accept water was estimated by calculating the Perc rate (infiltration rate) of the third gallon that infiltrated into the subsurface. During the infiltration of the first two gallons of water, the unsaturated soil beneath the Perc test is "wetting", therefore the rate of infiltration during the third gallon is considered more representative of conditions beneath an infiltration basin. Test Pit TP-1, where water infiltrated at a rate of 4.9 gpm per square foot, provided the fastest Perc rate of the five tests. The slowest Perc rate was 1.1 gpm per square foot, measured in Test Pit TP-3. These Perc rates are considered by EGGI to be very favorable.

3. Evaluation of Deeper Sediment Percolation Rates

Once the Perc testing was complete, three test boring locations, MER45-AR1, MER45AR2, and MER45-AR3, were identified in the areas of the test pits to evaluate the deeper subsurface materials (Figure 3 and Appendix B). Test Borings MER45-AR1 and MER45-AR2 are located on the terrace west of MVD-5 and MER45-AR3 is within the former sand \& gravel pit located south of MVD-5.

The three test borings were installed to depths of 73, 62, and 40 feet, respectively. Test Boring MER45-AR1 was the only one to intercept competent bedrock, but all three wells intercepted coarse-grained aquifer deposits both above and below the water table (Appendix A). During the installation of the test borings, a modified version of a percolation test was applied to test the relative permeability of the unsaturated material between the bottom of the recentlyinstalled test pits and the saturated aquifer deposits. Artificial Recharge can only be feasible if the unsaturated zone allows the migration of artificially recharged water vertically downward so that it can recharge the underlying aquifer.

The modified percolation tests were conducted in Test Borings MER45-AR1 and MER45-AR2, at depths of 10 feet and 20 feet below grade in each boring. The testing consisted of advancing the four-inch-diameter steel casing, per the normal drilling process, and cleaning out the steel casing to the prescribed depth. A 1.25-inch-diameter drive point well was then attached to the well drilling rods and pushed or pounded into the gravel formation below the drilling depth. This allowed the drive point screen to be exposed to relatively undisturbed Aquifer formation material. An automated water level recorder was then installed in the well screen and water was added to the drill rods, thus creating a "falling head" permeability test (or
slug test). The rate at which the water in the drill rods was forced into the Aquifer formation material is a function of the permeability of that formation. The results of the permeability testing are expressed as hydraulic conductivity with the units of feet/day:

Test Boring	Interval (feet below ground surface)	Hydraulic Conductivity (feet/day)
MER45-AR1	10 to 12	21.5
MER45-AR1	20 to 22	6.5
MER45-AR2	10 to 12	11.0
MER45-AR2	20 to 22	1.5

The values of hydraulic conductivity calculated during all four testing intervals fall into a range typical of clean fine to medium sands (Appendix B). It is likely that these conductivity results are biased towards lower readings than what are the actual conductivity of the Aquifer formation materials due to remnant silt that was present in the wash water inside each boring. This is inherent with any in-situ testing conducted during drilling. However, the results of the borehole permeability testing do suggest that the unsaturated formation is composed of very favorable material for the infiltration and migration of artificially-recharged water.

Permanent 3-inch-diameter, PVC monitoring wells were installed in each of the three borings. Subsequent to the installation of the three monitoring wells, each well was developed using a combination of surge blocks and pumping to evacuate finer-grained material from the well and surrounding formation. Short-term pumping tests conducted on all three wells (MER45-AR1, MER45-AR2, and MER45-AR3) results in specific capacity values of 135, 45, and 82 gallons per minute per foot of pumping-induced drawdown (gpm/ft), respectively. All of these values are very high for three-inch-diameter wells and are indicative of the highly transmissive aquifer deposits. Therefore, the deep subsurface in all three areas tested are considered very favorable for the infiltration and migration of groundwater beneath artificial recharge basins.

4. Recommended Infiltration Basin Design

The average Perc rate calculated during the permeability testing conducted in the shallow test pits was 2.9 gallons per minute per square foot, ranging from 1.1 to $4.9 \mathrm{gpm} / \mathrm{ft}^{2}$. MVD would benefit greatly by having the ability to artificially recharge up to 700 gpm (just over one million gallons per day) into the MVD-4/5 Well Field. Assuming the lowest Perc rate of 1.1 $\mathrm{gpm} / \mathrm{ft}^{2}$, it would take an infiltration basin with a bottom area of $636 \mathrm{ft}^{2}$ (roughly a square basin of about 25 feet on each side) to allow that degree of infiltration. However, given seasonal variations in water temperature (which effects viscosity of the water), siltation of the basins, and some degree of biofouling, a safety margin of at least five should be built into the basin design. Therefore, a more realistic basin size to accomplish the infiltration of 700 gpm would be 3,200 ft^{2} (a square of 56 feet on each side).

Provided the site layout constraints at the MVD-4/5 Well Field, EGGI recommends that two rectangular basins be designed on the terrace west of MVD-5 (Figure 4). Each of those basins could be constructed in the area just west of test Wells MER45-AR1 and MER45-AR2 and be approximately 35 feet wide and 100 feet long ($3,500 \mathrm{ft}^{2}$). That would allow either basin to be capable of infiltrating the desired volume of AR water. In addition, Wells MER45-AR1 and MER45-AR2 can be used as monitoring wells between the infiltration basins and MVD-5.

We would also strongly recommend that a third basin be installed in the former sand \& gravel pit south of MVD-5 (Figure 4). This will provide redundancy for the other two and allow more flexibility for the use of AR and allows routine maintenance of the basins. The third basin should have roughly the same total area (3,500 square feet), but the configuration can be modified to better fit the layout of the site.

B. Geochemical Investigation of Aquifer

The geochemistry of the Aquifer tapped by Production Wells MVD-4 and MVD-5 was investigated through three primary sampling programs: 1) Long-term water quality testing performed by MVD, 2) A leaching test performed on solid samples collected from unsaturated Aquifer formation materials, and 3) Groundwater samples collected from each of the three new monitoring wells: MER45-AR1, MER45-AR2, and MER45-AR3.

1. Long-Term Records for Production Wells MVD-4 and MVD-5

The MVD has been collecting groundwater samples from Production Well MVD-4 and MVD-5 almost every quarter since 1992, providing a long-term record of transient changes to groundwater within the contributing area of the Well Field (these data are being prepared for submission to MVD in a different report). In general, the chemistry records reflect long-term stability and no systematic decline in any of the nine parameters that are regularly analyzed (turbidity, copper, lead, iron, manganese, sodium, chloride, nitrate, and pH). The only long-term trend of moderate concern is a subtle increase in sodium and chloride over the years from continued deicing practices in the area.

Likewise, the chemistry records from MVD-5 indicate similar chemical stability over the period of record and the same subtle increase in sodium chloride levels over the years. Recent years have shown salt levels in MVD-5 that are nearing the Secondary Drinking Water Level for chloride ($250 \mathrm{mg} / \mathrm{l}$). Sodium concentrations are significantly above levels that are a concern for people on sodium-restricted diets ($20 \mathrm{mg} / \mathrm{l}$).

2. Leaching Test

The leaching test included the collection of solid soil samples from the base of Test Pits TP-1 and TP-3. These solid formation samples are considered representative of the near surface, unsaturated materials overlying the water table. In addition, a raw unfiltered surface water sample was collected from the Merrimack River on the same day. Once those samples were collected, the leaching test consisted of mixing the Merrimack River sample with the solid samples (ratio of $20: 1$, water to solid) and tumbling them together for a period of 48 hours. Once the tumbling was completed, the resulting effluent from each sample was filtered with a 0.45 -
micron filter to extract the sample. Further, an aqueous "tumble blank" was created by tumbling only the surface water collected from the Merrimack River for 48 hours and then drawing off a filtered (0.45-micron) sample.

Each of those four samples (raw Merrimack River, Tumble Blank, and two effluents) were tested for eight different parameters at Eastern Analytical, Inc., of Concord, New Hampshire (Table II and III, and Appendix C):

- Dissolved Organic Carbon (DOC)
- Total UVA at 254 nm (A measure of the absorbance of ultra-violet light at a wavelength of 254 nanometers; an indicator of carbon content)
- True Color
- pH
- Arsenic
- Calcium
- Iron
- Manganese
- PFAS (aqueous)

The two solid samples which were collected from Test Pits TP-1and TP-3 were also analyzed for the presence of PFAS (Table III and Appendix C). Finally, a groundwater sample was collected from Monitoring Well MER45-AR2 on August 9, 2019, to test for the presence of PFAS.

The results of the leaching test can be summarized as follows:

- The raw Merrimack River water exhibited elevated color (20-25 color units or cu), iron, and manganese. The Tumbler Blank (Merrimack River water tumbled for 48 hours and then filtered) lost much of its color (5-10 cu), all of its manganese, and a significant amount of its iron.
- The dissolved organic carbon (DOC) increased slightly in the Tumbler Blank compared to raw Merrimack River water, but the UVA was reduced by nearly half.
- When the Tumbler Blank is compared to the effluent from the tumbled solid samples, there is a notable decrease in DOC, UVA, and color, all suggesting the solid formation material was helping to remove the natural organic compounds present in the Merrimack River water.
- Both effluent samples were absent for iron, but manganese, which was not present in the Tumbler Blank was apparently mobilized into solution. The calcium in the effluent sample from TP-3 had decreased slightly from 5.5 to $4.7 \mathrm{mg} / \mathrm{l}$, suggesting some calcium may be coming out of solution and attaching to the sediment.
- Finally, arsenic, which was not detected in the raw Merrimack River water, the Tumbler Blank, or the effluent from TP-3, was present in the effluent from TP-1. However, the arsenic was detected at a very low level of $0.001 \mathrm{mg} / \mathrm{l}$, which is equal to the laboratory method detection limit.

With regard to PFAS (Table III):

- Raw Merrimack River water contained very low concentrations of seven different PFAS compounds; the only regulated PFAS, PFOA and PFOS, were identified at concentrations of 3.31 and 1.44 nanograms per liter (ng/l or parts per trillion), for a combined total of $4.75 \mathrm{ng} / \mathrm{l}$.
- The Tumbler Blank had no PFAS detections, which suggests that the low level PFAS in the River water was adsorbed onto suspended solids that would have been filtered out of the Tumbler Blank sample.
- Analysis of the solid formation material from Test Pit TP-1 shows all PFAS were absent; the solids from Test Pit TP-3 show barely detectable concentrations of two PFAS: PFHpA and PFOA.
- The effluent from the tumbled solid sample collected from TP-1 did show the low-level presence of four PFAS which necessarily came from the River water. In some cases, PFAS levels were slightly higher in the effluent than the raw River water. Since no PFAS were detected in the solids from TP-1, the increased concentrations are anticipated to be the result of laboratory errors in the analysis.

3. Groundwater Sampling

All three of the newly-installed monitoring wells were sampled after development of the well screens for a full suite of drinking water parameters (Table IV and Appendix D). Samples were submitted to National Testing Laboratories of Cleveland, Ohio. All the samples for analysis of metals were field filtered such that the results reflect dissolved metal concentrations.

The results of those samples show that the groundwater samples all have excellent groundwater quality, with no man-made or natural contaminants elevated above Primary Maximum Contaminant Levels (PMCL, or those levels in drinking water based on potential health effects). However, there is troubling evidence of elevated sodium chloride resulting from deicing products being applied in the contributing recharge area to Wells MVD-4 and MVD-5. Chloride levels in Wells MER45-AR1, MER45-AR2, and MER45-AR3 were measured at 370, 520, and $270 \mathrm{mg} / \mathrm{l}$, respectively, all of which exceed the Secondary Maximum Contaminant Level (SMCL) for chloride. SMCL's are based on aesthetic characteristics, such as taste or odor, and are not based on potential health effects. The related sodium levels are high enough to be of concern for people on restricted sodium diets. The Artificial Recharge of River water, which is very low in sodium and chloride, will serve to lower the total sodium chloride concentrations by diluting existing concentrations. However, it is also recommended that the MVD takes steps to reduce the introduction of sodium and chloride into this Aquifer.

The groundwater sample collected from Monitoring Well MER45-AR2 (the only groundwater sample taken) contained six different PFAS compounds at levels between $5.26 \mathrm{ng} / \mathrm{l}$ (PFBA) and $38.9 \mathrm{ng} / \mathrm{l}$ (PFOA).

III. Evaluate Potential to use Water from Baboosic Brook and/or the Merrimack River for Artificial Recharge

In order to evaluate the feasibility of withdrawing water from local surface water bodies for infiltration into potential recharge basins, EGGI investigated three surface water bodies: Baboosic Brook, Souhegan River, and Merrimack River. Baboosic Brook is by far the smallest of the three watersheds, draining 49.11 square miles in portions of Merrimack and Bedford. However, it is attractive because of its elevation above the Well Field (reducing the need for pumping) and relative proximity (Figure 1). The confluence of the Souhegan and Merrimack Rivers is approximately 4,300 feet south of the Well Field. However, at this point the Souhegan River water is essentially the same as the Merrimack River, so it was eliminated as a potential source early in the process. The Merrimack River is a major regional drainage (3,184 square miles) for all of central New Hampshire and is located adjacent to the MVD-4/5 Well Field. Specific tasks performed include:

- Field inspections of Baboosic Brook (three locations), the Souhegan River (one location, and the Merrimack River (two locations) (Figure 1).
- Surface water samples were collected from both Baboosic Brook and the Merrimack River.
- Reconnaissance-level inspections of potential pipeline routes were completed.
- A search for historical water chemistry data from surface water bodies was attempted but was generally unsuccessful. The data that is available was of limited use for this investigation.

Field inspection of Baboosic Brook revealed that the source water is very tannic after its circuitous, low-gradient journey through the north end of Merrimack. The elevated color could be a significant concern from a natural filtration standpoint, if it was to be used to artificially recharge the aquifer. A sample of the surface water did not reveal any natural or man-made contaminants, but the chloride ($51 \mathrm{mg} / \mathrm{l}$) reflects abundant stormwater runoff from the suburban watershed (Appendix E). Of greatest concern is the relatively small size of the watershed (49.11 square miles). The summertime Q80 flow (flow that is exceeded 80% of the time) in Baboosic Brook is only 4.47 cubic feet per second (cfs) (2,000 gallons per minute or gpm). Therefore, under low flow conditions any withdrawal for AR could be a significant portion of the total stream flow. Therefore, withdrawals of water would likely be subject to limitations. Furthermore, construction of any pipeline from Baboosic Brook to the Well Field will involve multiple property owners, and road crossings which will significantly complicate this process.

The Merrimack River watershed upstream of the Well Field encompasses 3,184 square miles (65 times larger than the Baboosic Brook watershed). The Q80 flow of the Merrimack River during summer months is 960 cfs (430,000 gpm or approximately 620 times the proposed withdrawal of 700 gpm). Therefore, the size of the Merrimack River watershed is much more amenable for obtaining the water needed for year-round AR. The surface water sample collected from the River did not reveal any natural or man-made contaminants (Appendix E). ${ }^{3}$ Water withdrawals from the River will require a pump station and pipeline capable of conveying the water approximately 45 to 50 vertical feet to reach the upper AR basins west of MVD-5.

[^1]Two different potential pipeline routes were considered from the Merrimack River to the Well Field. The shortest of these potential routes (Route Merrimack 1 on Figure 1) is approximately 1,380 feet long and follows existing woods roads much of the way. This route also requires crossing an active railroad track (Pan Am Railways of North Billerica, Massachusetts) and utilities along that right-of-way. Horizontal drilling of the pipeline would be necessary to penetrate sufficiently below those obstacles. However, the only way to avoid the railroad track/utilities crossing would be to extend the length of the pipeline to over 2,800 feet to take advantage of an existing drainageway that exists beneath the railroad tracks (Route Merrimack 2 on Figure 1). Even that route would likely require some kind of permission/permitting from Pan Am Railways). It is EGGI's opinion that the most direct and most cost-effective route for the potential pipeline is Route Merrimack 1 as shown on Figure 1. ${ }^{4}$

IV. EVALUATION OF PERMITTING REQUIREMENTS

Development of an Artificial Recharge program for the MVD-4 and MVD-5 Well Field will require the successful approval of a number of permits, including:

- Surface Water Withdrawal: Two primary types of permitting will be required to remove water from the Lower Merrimack River: 1) those necessary for installation of the intake structure and pipeline, and 2) the actual water withdrawal. This reach of the River is a "Designated River" according to the New Hampshire Department of Environmental Services (NHDES) and it will be subject to the requirements of the Shoreline Water Quality Protection Act. Disturbance of the river bank for installation of the intake structure will trigger a wetlands permit, which will require completion of a "401 Water Quality Certificate" through the NHDES Watershed Management and Wetlands Bureaus. This could impact both the construction of an intake structure in the River and the actual withdrawal of the water.
- Groundwater Discharge Permit: An application will need to be submitted to and approved by the NHDES for the infiltration of surface water into the subsurface. This permit application process will include a detailed testing plan to provide a "Proof of Concept" for removal of the surface water-related organisms (e.g., bacteria). This testing would include the benchmark testing of aquifer materials and a large-scale pumping test utilizing temporary infiltration basins and the existing Production Wells.
- Large Groundwater Withdrawal Permit is NOT required: Because existing Production Wells MVD-4 and MVD-5 were put online prior to the current NHDES Large Groundwater Withdrawal Regulations, so they are exempt from the need for a permit, even if the wells remove a volume greater than historical withdrawals.
- Crossing of the active railroad tracks owned and operated by Pan Am Railways will require permission from Pan Am and coordination with the railway requirements and procedures.

[^2]
V. CONCLUSIONS/RECOMMENDATIONS

This preliminary investigation has shown that it is technically feasible and favorable to use Artificial Recharge to provide supplemental groundwater recharge to the Aquifer supplying groundwater to the Merrimack Village District Wells MVD-4 and MVD-5. The Merrimack River provides a very reliable source of surface water near the site, even under low flow conditions. The surficial deposits near the surface and deep within the Aquifer are composed of sand and gravel which would allow adequate infiltration of the surface water and deep migration of the groundwater towards the existing Production Wells while providing substantial natural filtration. Therefore, all the natural elements are in place for the use of Artificial Recharge basins to enhance infiltration of the surface water into the underlying Aquifer. In addition, the pumping capacity of Well MVD-5 is much greater than what the natural recharge can supply, so existing infrastructure can be better utilized to withdraw additional groundwater with few improvements.

In summary, the advantages of using Artificial Recharge at Wells MVD-4 and MVD-5 include the following:

1. It will enhance the overall yield of Wells MVD-4 and MVD-5 by as much as 660,000 gpd.
2. The addition of surface water from the Merrimack River will serve to dilute the continuously increasing concentrations of sodium and chloride in the Aquifer. Sodium and chloride are very expensive to remove from water (use of reverse osmosis) and the use of Artificial Recharge could be a reasonably inexpensive means to reduce these sodium and chloride levels.
3. The use of AR should reduce the concentration of PFAS compounds found in the water pumped from Wells MVD-4 and MVD-5 that had been identified during earlier studies of this Well Field. The reduction in PFAS compounds should also increase the length of time the carbon filters will last.
4. The MVD will be able to use the existing infrastructure (pump house) and pumping treatment facility to reduce the cost per gallon of water produced at this site.

A number of permits and/or permission will need to be approved for this AR project. This will include permits for: a) the installation of an intake structure in the Merrimack River; b) surface water withdrawals from the River; c) a pipeline crossing of the existing railroad tracks; and d) introduction of the surface water into the Aquifer via the AR basins. However, the substantial benefits of utilizing AR to supplement the available recharge to the existing Production Wells justify obtaining those permits/permissions.

EGGI recommends completion of the following work tasks so that increased groundwater withdrawals from this Well Field can be realized:

- Perform a small-scale pilot test of a temporary infiltration basin. Water from the MVD system could be used for the pilot test, if the temporary withdrawal and transport of surface water is too cumbersome and expensive.
- Perform a benchtop-scale filtration tests to ensure that surface water from the River is compatible with the Aquifer materials and that the Aquifer materials can provide the required filtration of the surface water. Due to the difficulty of disposing groundwater
pumped from the Production Wells with elevated PFAS levels and the difficulty of temporarily withdrawing/transporting the surface water across the railroad, it may be best that this benchtop testing be performed off-site. The Town of Merrimack's wastewater treatment plant, located adjacent to the Merrimack River, might be an excellent option for use as a testing location.
- Collect groundwater samples from representative monitoring wells around the Well Field to determine the current concentration and distribution of PFAS and sodium chloride contamination. This will help to further quantify the full benefit of diluting existing groundwater resources beneath the site.

VI. LIMITATIONS

EGGI has collected and evaluated the available technical data according to professionally accepted scientific standards. The recommendations provided herein represent EGGI's professional opinion based upon the hydrogeologic data collected and do not constitute a warranty written or implied.

VII. REFERENCE

Emery \& Garrett Groundwater, Inc. (EGGI), 2003, Establishment of the Source Water Protection Area, Merrimack Village District Wells MVD-4 and MVD-5, Merrimack, New Hampshire. Submitted to Merrimack Village District in December 2003.

FIGURES

TABLES

TABLE I
Geologic Descriptions of Test Pits - June 7, 2018 Artificial Recharge Evaluation Merrimack Village District MVD-4 and MVD-5 Well Field Merrimack, New Hampshire

Test Pit	Interval	Description	Perc Test Gallons	Cumulative Perc Time* Minutes:Seconds/Gallon	Perc Rate During Third Gallon Infiltrated (GPM)	Perc Rate Per Square Foot (GPM/FT^2)
Test Pit TP-1	$\begin{aligned} & \hline 0 \text { to } 1.25^{\prime} \\ & 1.25 \text { to } 6^{\prime} \end{aligned}$	Silty sand with some pebbles and cobbles. Layers of tan, well-sorted, medium to coarse sand; groundwater intercepted.	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 00: 08.6 \\ & 00: 24.9 \\ & 00: 47.6 \end{aligned}$	2.6	4.9
Test Pit TP-1A	$\begin{gathered} 0 \text { to } 1^{\prime} \\ 1 \text { to } 3^{\prime} \\ 3 \text { to } 4.5^{\prime} \\ \hline \end{gathered}$	Tan, silty sand. Tan, medium to coarse sand with rusty layers and thin gay, silty layers. Very poorly-sorted, fine to very coarse sand, some pebbles, some silt, little cobbles; groundwater intercepted.				
Test Pit TP-1B	0 to 6'	Interlayered, tan to rusty fine to coarse sand with gray to rusty silty layers, trace cobbles. Sand is generally silty except for occasional coarse layers.				
Test Pit TP-1C	$\begin{gathered} 0 \text { to } 0.5^{\prime} \\ 0.5 \text { to } 2.5^{\prime} \\ 2.5 \text { to } 6^{\prime} \end{gathered}$	Silty fine to coarse sand. Tan to rusty, poorly-sorted fine to very coarse sand, some pebbles, little cobbles. Gray, well-sorted sand, some pebbles, little cobbles.				
Test Pit TP-2	$\begin{gathered} \hline 0 \text { to } 0.7^{\prime} \\ 0.7 \text { to } 2.5^{\prime} \\ 2.5 \text { to } 4^{\prime} \end{gathered}$	Brown, organic-rich soil. Tan, well-sorted, fine to medium sand, trace silt. Tan to gray, medium to very coarse sand, little granules.	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 00: 28.7 \\ & 01: 00.0 \\ & 01: 41.0 \end{aligned}$	1.5	2.7
Test Pit TP-3	$\begin{aligned} & \hline 0 \text { to } 0.5^{\prime} \\ & 0.5 \text { to } 2^{\prime} \\ & 2 \text { to } 6.5^{\prime} \\ & \hline \end{aligned}$	Dark brown, organic-rich soil. Tan, fine to medium sand, trace silt. Tan to gray, moderately-sorted, medium to very coarse sand, trace pebbles.	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 00: 48.0 \\ & 02: 00.0 \\ & 03: 42.0 \\ & \hline \end{aligned}$	0.6	1.1
Test Pit TP-3A	$\begin{gathered} 0 \text { to } 0.7^{\prime} \\ 0.7 \text { to } 3.5^{\prime} \\ 3.5 \text { to } 6^{\prime} \end{gathered}$	Organic-rich soil. Tan, fine to medium sand, trace silt. Medium to very coarse sand, some pebbles.				
Test Pit TP-3B	$\begin{gathered} 0 \text { to } 0.9^{\prime} \\ 0.9 \text { to } 2.5^{\prime} \\ 2.5 \text { to } 4^{\prime} \end{gathered}$	Organic-rich soil. Tan, fine to medium sand, trace pebbles. Tan, medium to very coarse sand, some pebbles.				
Test Pit TP-4	$\begin{gathered} \hline 0 \text { to } 0.5^{\prime} \\ 0.5 \text { to } 1.5^{\prime} \\ 1.5 \text { to } 6^{\prime} \\ \hline \end{gathered}$	Organic-rich soil. Tan, fine to medium sand. Coarse to very coarse sand, some gravel.	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	00:27.0 00:58.0 01:47.0	1.2	2.3
Test Pit TP-5	$\begin{gathered} \hline 0 \text { to } 0.5^{\prime} \\ 0.5 \text { to } 2^{\prime} \\ 2 \text { to } 4^{\prime} \\ 4 \text { to } 5.5^{\prime} \\ \hline \end{gathered}$	Organic-rich soil. Tan, fine to medium sand, trace pebbles. Tan to gray, fine to very coarse sand, trace pebbles. Coarse to very coarse sand, trace gravel.	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { 00:15.0 } \\ & \text { 00:35.0 } \\ & \text { 01:07.0 } \end{aligned}$	1.9	3.5

* Perc Time = The time required for subsequent gallons of water to flow vertically out of an open-ended five-gallon bucket into the formation.

Four gallons of water are added to the bucket and the time is recorded for each of the first three gallons to infiltrate through a known area.

TABLE II

Results of Laboratory Analyses of Water Quality Samples
 Leaching Tests near the MVD-4/5 Well Field Merrimack Village District, Merrimack, New Hampshire

Sample Name MCL:	Dissolved Organic Carbon (mg/l)	$\begin{gathered} \text { Total UV } \\ \text { at } 254 \mathrm{n} \\ \mathrm{~cm}-1 \end{gathered}$	ColorTrue PtCo	$\begin{gathered} \mathrm{pH} \\ 6.5-8.5 \end{gathered}$	Arsenic $\begin{gathered} (\mathrm{mg} / \mathrm{l}) \\ 0.01 \end{gathered}$	Calcium (mg/l)	$\begin{gathered} \text { Iron } \\ (\mathrm{mg} / \mathrm{l}) \\ 0.3 \\ \hline \end{gathered}$	Manganese (mg/l) 0.05
$\begin{aligned} & \hline \text { Effluent } \\ & \text { TP-1 } \end{aligned}$	2.8	0.060	< 5	7.02	0.001	5.6	<0.05	0.029
$\begin{aligned} & \text { Effluent } \\ & \text { TP-2 } \end{aligned}$	1.8	0.013	<5	6.77	<0.001	4.7	<0.05	0.093
Tumble Blank	3.2	0.077	5-10	6.99	<0.001	5.5	0.15	<0.005
Raw Merrimack River	3.0	0.130	20-25	6.93	<0.001	5.7	0.83	0.041

MCL = Maximum Contaminant Levels
Values in bold exceed Environmental Protection Agency (EPA) Maximum Contaminant Levels (MCL) and may require treatment. $\mathrm{ND}=$ not detected

TABLE III

Results of Sampling for Per- and Polyfluorinated Alkyl Substances (PFAS) Sample Locations near the MVD-4/5 Well Field Merrimack Village District, Merrimack, New Hampshire

Analyte	Raw Merrimack River	Tumble Blank	$\begin{gathered} \text { Effluent } \\ \text { TP-1 } \end{gathered}$	$\begin{aligned} & \text { Solid } \\ & \text { TP-1 } \end{aligned}$	$\begin{gathered} \text { Effluent } \\ \text { TP-3 } \end{gathered}$	$\begin{gathered} \text { Solid } \\ \text { TP-3 } \end{gathered}$	Monitoring Well MER45-AR2
PFBA	1.31	ND	1.28	ND	3.38	ND	5.26
PFPeA	1.61	ND	2.07	ND	6.79	ND	9.44
PFBS	1.88	ND	ND	ND	ND	ND	10.6
PFHxA	ND	ND	ND	ND	ND	ND	13.5
PFHpA	1.16	ND	2.61	ND	10.7	0.370	8.56
PFHxS	2.70	ND	ND	ND	1.44	ND	ND
6:2 FTS	ND	ND	ND	ND	ND	ND	NT
PFOA	3.31	ND	1.50	ND	48.6	0.616	38.9
PFHpS	ND	ND	ND	ND	ND	ND	NT
PFNA	ND						
PFOSA	ND	ND	ND	ND	ND	ND	NT
PFOS	1.44	ND	ND	ND	ND	ND	ND
PFDA	ND						
8:2 FTS	ND	ND	ND	ND	ND	ND	NT
MeFOSAA	ND						
EtFOSAA	ND						
PFUnA	ND						
PFDS	ND	ND	ND	ND	ND	ND	NT
PFDoA	ND						
MeFOSA	ND	ND	ND	ND	ND	ND	NT
PFTrDA	ND						
PFTeDA	ND						
EtFOSA	ND	ND	ND	ND	ND	ND	NT
PFHxDA	ND	ND	ND	ND	0.390	ND	NT
MeFOSE	ND	ND	ND	ND	ND	ND	NT
EtFOSE	ND	ND	ND	ND	ND	ND	NT

[^3]TABLE IV
Results of Laboratory Analyses of Water Quality Samples
Test Wells near the MVD-4 and MVD-5 Well Field Merrimack Village District, Merrimack, New Hampshire

Well Name	$\begin{array}{\|c\|} \hline \text { Iron } \\ (\mathrm{mg} / \mathrm{l}) \\ \hline \end{array}$	Manganese (mg/l)	$\mathbf{p H}$	Alkalinity $(\mathrm{mg} / \mathrm{l})$	Chloride $(\mathrm{mg} / \mathrm{l})$	$\begin{gathered} \text { Sodium** } \\ (\mathrm{mg} / \mathrm{l}) \\ \hline \end{gathered}$	Turbidity (ntu)	Hardness (mg/l)	Total Dissolved Solids (mg/l)	Sulfate (mg/l)	Nitrate (mg/l)	$\begin{aligned} & \text { VOCs } \\ & \text { (mg/l) } \end{aligned}$	Pesticides Herbicides PCBs (mg/l)
MCL:	0.30	0.05	6.5-8.5		250		1		500	250	10		
AR1	ND	0.014	5.8	22	370	181	ND	110	640	12	1.5	ND	ND
AR2	ND	0.016	5.8	ND	520	263	ND	120	860	14	1.5	ND	ND
AR3	ND	ND	6.0	22	270	125	ND	100	480	11	1.7	ND	ND

MCL = Maximum Contaminant Levels
Values in bold exceed Environmental Protection Agency (EPA) Maximum Contaminant Levels (MCL) and may require treatment.
ND = not detected
*Recommended level for people on a low sodium diet is $20 \mathrm{mg} / \mathrm{l}$.

APPENDIX A

HYDROGEOLOGIC LOGS

HYDROGEOLOGIC LOG FOR MONITORING WELL MER45-AR1 Merrimack Village District, Production Wells MVD-4 and MVD-5 Merrimack, New Hampshire

Project: MVD-4 / MVD-5 Artificial Recharge
Driller: Northern Test Boring
Total Depth of Well: 55.5
Depth to Bedrock: 73'
Geologist: Dan Tinkham
Static Water Level: 42.13' below top of casing (8/9/18)
Screen Interval (Slot Size): 49'-67' (0.020' slotted)
Date Drilled: July 2, 2018
Drill Method: 4-inch Casing - Drive and Wash

*a.g. - Above Ground Surface; b.g. - Below Ground Surface
** Penetration blows with a 140 pound hammer falling 30 inches (per 6-inches over a 2 foot interval).

GEOLOGIC LOG LEGEND FOR TEST WELL MER45-AR1

Generally, well-sorted, medium to coarse sands, varying amounts of gravel (see log for details). Generally, poorly-sorted (well-graded), fine to coarse sands with pebbles to cobbles (see log).	PERCENTAGES USED IN SAMPLE DESCRIPTIONS
	Trace $=0-10 \% \quad$ Little $=10-20 \%$

HYDROGEOLOGIC LOG FOR MONITORING WELL MER45-AR2 Merrimack Village District, Production Wells MVD-4 and MVD-5 Merrimack, New Hampshire

Project: MVD-4 / MVD-5 Artificial Recharge
Driller: Northern Test Boring
Geologist: Dan Tinkham
Date Drilled: July 3, 2018
Drill Method: 4-inch Casing - Drive and Wash
DEPTH
*a.g. - Above Ground Surface; b.g. - Below Ground Surface
** Penetration blows with a 140 pound hammer falling 30 inches (per 6-inches over a 2 foot interval).

GEOLOGIC LOG LEGEND FOR TEST WELL MER45-AR2

[^4]
HYDROGEOLOGIC LOG FOR MONITORING WELL MER45-AR3 Merrimack Village District, Production Wells MVD-4 and MVD-5
 Merrimack, New Hampshire

Project: MVD-4 / MVD-5 Artificial Recharge
Driller: Northern Test Boring
Geologist: Dan Tinkham
Date Drilled: July 3, 2018
Drill Method: 4-inch Casing - Drive and Wash

$\begin{gathered} \text { DEPTH } \\ (\text { feet }) \\ \hline \end{gathered}$	WELL CONSTRUCTION	$\begin{array}{\|c\|} \hline \text { DRILL } \\ \hline \text { LOG } \\ \hline \end{array}$	SAMPLE DESCRIPTION	**Penetration Blows (Recovery)
+2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44			$\mathbf{0}^{\prime}$ - 40': Brown, poorly-sorted, fine sand to pebbles, trace to little silt. 10'-12': Split-spoon; 8" of Brown, well-sorted, coarse to very coarse, trace granules. 2" Brown, poorly-sorted, fine sand to pebbles. 20'-22': Split-spoon; Brown, poorly-sorted, medium sand to pebbles.	$5-6-3-3$ (10 inches) 6-7-11-8 (8 inches)

*a.g. - Above Ground Surface; b.g. - Below Ground Surface
** Penetration blows with a 140 pound hammer falling 30 inches (per 6-inches over a 2 foot interval).

GEOLOGIC LOG LEGEND FOR TEST WELL MER45-AR3

Generally, poorly-sorted (well-graded), fine to coarse sands with pebbles to cobbles (see log).	PERCENTAGES USED IN SAMPLE DESCRIPTIONS
Trace $=0-10 \% \quad$ Little $=10-20 \%$ Some $=20-35 \% \quad$ And $=35-50 \%$	

APPENDIX B

PERCOLATION TEST ANALYSES

APPENDIX C

LEACHING TESTS

TUMBLE SAMPLES

professional laboratory and drilling services

Daniel Tinkham
Emery \& Garrett Groundwater Investigations, LLC
56 Main Street
Meredith, NH 03253
Subject: Laboratory Report
Eastern Analytical, Inc. ID: 182869
Client Identification: MER 4/5 AR | MER
Date Received: 6/7/2018

Dear Mr. Tinkham:

Enclosed please find the laboratory report for the above identified project. All analyses were performed in accordance with our QA/QC Program. Unless otherwise stated, holding times, preservation techniques, container types, and sample conditions adhered to EPA Protocol. Samples which were collected by Eastern Analytical, Inc. (EAI) were collected in accordance with approved EPA procedures. Eastern Analytical, Inc. certifies that the enclosed test results meet all requirements of NELAP and other applicable state certifications. Please refer to our website at www.easternanalytical.com for a copy of our NELAP certificate and accredited parameters.

The following standard abbreviations and conventions apply to all EAI reports:
Solid samples are reported on a dry weight basis, unless otherwise noted
<: "less than" followed by the reporting limit
>: "greater than" followed by the reporting limit
\%R : \% Recovery
Eastern Analytical Inc. maintains certification in the following states: Connecticut (PH-0492), Maine (NH005), Massachusetts (M-NH005), New Hampshire/NELAP (1012), Rhode Island (269), Vermont (VT1012) and New York (12072).

The following information is contained within this report: Sample Conditions summary, Analytical Results/Data, Quality Control data (if requested) and copies of the Chain of Custody. This report may not be reproduced except in full, without the the written approval of the laboratory.

If you have any questions regarding the results contained within, please feel free to directly contact me or the chemist(s) who performed the testing in question. Unless otherwise requested, we will dispose of the sample (s) 30 days from the sample receipt date.

We appreciate this opportunity to be of service and look forward to your continued patronage.
Sincerely,

\# of pages (excluding cover letter)

Client: Emery \& Garrett Groundwater Investigations, LLC (NH)

Client Designation: MER 4/5 AR | MER

Temperature upon receipt (${ }^{\circ} \mathrm{C}$): 2.1
Acceptable temperature range (${ }^{\circ} \mathrm{C}$): 0-6

Lab ID	Sample ID	Date Received	Date Sampled	Sample \% Dry Matrix Weight	Exceptions/Comments (other than thermal preservation)
182869.01	TP-1	6/7/18	6/7/18	soil	Adheres to Sample Acceptance Policy
182869.02	TP-3	6/7/18	6/7/18	soil	Adheres to Sample Acceptance Policy
182869.03	Merrimack River	6/7/18	6/7/18	aqueous	Adheres to Sample Acceptance Policy
182869.04	PFAS Tumble Blank	6/7/18		aqueous	Adheres to Sample Acceptance Policy
182869.05	Blank	6/7/18	6/7/18	aqueous	Adheres to Sample Acceptance Policy

Samples were properly preserved and the pH measured when applicable unless otherwise noted. Analysis of solids for pH , Flashpoint, Ignitability, Paint Filter, Corrosivity, Conductivity and Specific Gravity are reported on an "as received" basis.
Immediate analyses, pH, Total Residual Chlorine, Dissolved Oxygen and Sulfite, performed at the laboratory were run outside of the recommended 15 minute hold time.
All results contained in this report relate only to the above listed samples.
References include:

1) EPA 600/4-79-020, 1983
2) Standard Methods for Examination of Water and Wastewater, 20th Edition, 1998 and 22nd Edition, 2012
3) Test Methods for Evaluating Solid Waste SW 846 3rd Edition including updates IVA and IVB
4) Hach Water Analysis Handbook, 2nd edition, 1992

Client: Emery \& Garrett Groundwater Investigations, LLC (NH)

Client Designation: MER 4/5 AR | MER

Sample ID:

TP-1
TP-3
Blank

Lab Sample ID:	182869.01	182869.02	182869.05
Matrix:	soil	soil	aqueous
Date Sampled:	$6 / 7 / 18$	$6 / 7 / 18$	$6 / 7 / 18$
Date Received:	$6 / 7 / 18$	$6 / 7 / 18$	$6 / 7 / 18$
Dissolved Organic Carbon	2.8	1.8	3.2
Total UVA at 254 nm	0.060	0.013	0.077
ColorTrue	<5	<5	$5-10$
pH	7.02	6.77	6.99

Analytical Matrix	Units	Date of Analysis	Method	Analyst
SWLPsolid	mg / L	$6 / 14 / 18$	$5310 \mathrm{C}-00$	LO
SWLPsolid	$\mathrm{cm}-1$	$6 / 13 / 18$	$5910 \mathrm{~B}-94$	ATA
SWLPsolid	PtCo	$6 / 13 / 18$	110.2	AMB
SWLPsolid	SU	$6 / 13 / 18$	$4500 \mathrm{H}+\mathrm{B}$	KL

Sample ID:
Merrimack River

Lab Sample ID:	182869.03
Matrix:	aqueous
Date Sampled:	$6 / 7 / 18$
Date Received:	$6 / 7 / 18$
Dissolved Organic Carbon	3.0
Total UVA at 254 nm	0.13
ColorTrue	$20-25$
pH	6.93

Analytical Matrix	Units	Date of Analysis	Method	Analyst
AqDis	mg / L	$6 / 14 / 18$	$5310 \mathrm{C}-00$	LO
AqTot	$\mathrm{cm}-1$	$6 / 8 / 18$	$5910 \mathrm{~B}-94$	ATA
AqTot	PtCo	$6 / 8 / 18$	110.2	AMB
AqTot	SU	$6 / 7 / 18$	$4500 \mathrm{H}+\mathrm{B}$	KL

TP-1 \& TP-3 SWLPsolid: Per client request, samples were tumbled for 48 hours in river water (Merrimack River) provided by the client. After tumble, samples were filtered through 0.45 um filters. A 1:20 ratio of solid to river water was used for the tumble.

Sample "Blank" is the Merrimack River sample that has been tumbled for 48 hours and then filtered through a 0.45 um filter.

Client: Emery \& Garrett Groundwater Investigations, LLC (NH)
Client Designation: MER 4/5 AR | MER

Sample ID:

TP-1
TP-3
Blank

Lab Sample ID:	182869.01	182869.02	182869.05
Matrix:	soil	soil	aqueous
Date Sampled:	$6 / 7 / 18$	$6 / 7 / 18$	$6 / 7 / 18$
Date Received:	$6 / 7 / 18$	$6 / 7 / 18$	$6 / 7 / 18$
Arsenic	0.001	<0.001	<0.001
Calcium	5.6	4.7	5.5
Iron	<0.05	<0.05	0.15
Manganese	0.029	0.093	<0.005

Analytical Matrix	Units	Date of Analysis	Method	Analyst
SWLPsolid	mg / L	$6 / 13 / 18$	6020	DS
SWLPsolid	mg / L	$6 / 13 / 18$	6020	DS
SWLPsolid	mg / L	$6 / 13 / 18$	6020	DS
SWLPsolid	mg / L	$6 / 13 / 18$	6020	DS

Sample ID: Merrimack River

Lab Sample ID:	182869.03
Matrix:	aqueous
Date Sampled:	$6 / 7 / 18$
Date Received:	$6 / 7 / 18$
Arsenic	<0.001
Calcium	5.7
Iron	0.83
Manganese	0.041

Analytical Matrix	Units	Date of Analysis	Method	Analyst
AqTot	mg / L	$6 / 13 / 18$	200.8	DS
AqTot	mg / L	$6 / 13 / 18$	200.8	DS
AqTot	mg / L	$6 / 13 / 18$	200.8	DS
AqTot	mg / L	$6 / 13 / 18$	200.8	DS

TP-1 \& TP-3 SWLPsolid: Per client request, samples were tumbled for 48 hours in river water (Merrimack River) provided by the client. After tumble, samples were filtered through 0.45 um filters. A 1:20 ratio of solid to river water was used for the tumble.

Sample "Blank" is the Merrimack River sample that has been tumbled for 48 hours and then filtered through a 0.45 um filter.

July 30, 2018
Vista Work Order No. 1801266

Ms. Jennifer Laramie

Eastern Analytical, Inc.
25 Channel Drive
Concord, NH 03301
Dear Ms. Laramie,
Enclosed are the results for the sample set received at Vista Analytical Laboratory on June 14, 2018. This sample set was analyzed on a standard turn-around time, under your Project Name '182869 NH 3191'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maser
Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Work Order No. 1801266

Case Narrative

Sample Condition on Receipt:

Four aqueous samples and two soil samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

PFAS Isotope Dilution Method

As directed, the aqueous extracts of samples "TP-1" and "TP-3" were filtered prior to extraction.

Sample "Merrimack River" contained particulate and was centrifuged prior to extraction.

The samples were extracted and analyzed for a selected list of PFAS using the PFAS Isotope Dilution Method. This method is listed on Vista's NELAP certificate as Modifed EPA Method 537. The results for PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Results for all other analytes include the linear isomers only.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above the Reporting Limit. The OPR recoveries were within the method acceptance criteria.

The labeled standard recoveries outside the acceptance criteria are listed in the table below.

VAL-PFAS

The samples were extracted and analyzed for a selected list of PFAS using VAL Method PFAS. The results for PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Results for all other analytes include the linear isomers only.

Holding Times

The samples were extracted and analyzed within the hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above $1 / 2$ the Reporting Limit (RL). The OPR recoveries were within the method acceptance criteria.

The labeled standard recoveries outside the acceptance criteria are listed in the table below.

QC Anomalies

LabNumber	SampleName	Analysis	Analyte	Flag	\%Rec
1801266-02	PFAS Tumble Blank	PFAS Isotope Dilution Method	d3-MeFOSA	H	9.70
1801266-03	TP-1	PFAS Isotope Dilution Method	d3-MeFOSA	H	5.90
1801266-03	TP-1	PFAS Isotope Dilution Method	d5-EtFOSA	H	6.70
1801266-04	TP-1	VAL - PFAS	d3-MeFOSA	H	5.40
1801266-04	TP-1	VAL - PFAS	d5-EtFOSA	H	4.30
1801266-05	TP-3	PFAS Isotope Dilution Method	d3-MeFOSA	H	4.30
1801266-05	TP-3	PFAS Isotope Dilution Method	d5-EtFOSA	H	5.30
B8F0149-BLK1	B8F0149-BLK1	PFAS Isotope Dilution Method	d3-MeFOSA	H	4.70
B8F0149-BLK1	B8F0149-BLK1	PFAS Isotope Dilution Method	d5-EtFOSA	H	5.50
B8F0149-BS1	B8F0149-BS1	PFAS Isotope Dilution Method	d3-MeFOSA	H	6.60
B8F0149-BS1	B8F0149-BS1	PFAS Isotope Dilution Method	d5-EtFOSA	H	8.10
B8F0179-BLK1	B8F0179-BLK1	VAL - PFAS	d3-MeFOSAA	H	29.1
B8F0179-BLK1	B8F0179-BLK1	VAL - PFAS	d5-EtFOSAA	H	30.7
B8F0179-BLK1	B8F0179-BLK1	VAL - PFAS	13C2-PFUnA	H	42.3
B8F0179-BLK1	B8F0179-BLK1	VAL - PFAS	d3-MeFOSA	H	6.40
B8F0179-BLK1	B8F0179-BLK1	VAL - PFAS	d5-EtFOSA	H	5.90

$\mathrm{H}=$ Recovery was outside laboratory acceptance criteria.

TABLE OF CONTENTS

Case Narrative 1
Table of Contents 4
Sample Inventory 5
Analytical Results 6
Qualifiers 27
Certifications 28
Sample Receipt 29

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
1801266-01	Merrimack River	07-Jun-18 15:20	14-Jun-18 10:18	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1801266-02	PFAS Tumble Blank	07-Jun-18 00:00	14-Jun-18 10:18	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1801266-03	TP-1	07-Jun-18 09:15	14-Jun-18 10:18	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1801266-04	TP-1	07-Jun-18 09:15	14-Jun-18 10:18	HDPE Jar, 6 oz
				HDPE Jar, 6 oz
1801266-05	TP-3	07-Jun-18 12:45	14-Jun-18 10:18	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1801266-06	TP-3	07-Jun-18 12:45	14-Jun-18 10:18	HDPE Jar, 6 oz
				HDPE Jar, 6 oz
1801266-07	Blank	07-Jun-18 00:00	14-Jun-18 10:18	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL

ANALYTICAL RESULTS

analytes.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{} \& \& \& \& \& \& \& \multicolumn{3}{|l|}{}

\hline 1 \& 8¢：60 8I－［nf－80 \& T scioo \& 81－unf－IZ \& 6tI0H8g \& 0عI－09 \& ¢＇s6 \& \& SI \& \& \& VOAd－z．ę

\hline 1 \& 85：60 81－nf－80 \& T Szlo \& $8 \mathrm{I}^{-\mathrm{um}} \mathrm{f}-\mathrm{Iz}$ \& 6710488 \& OSI－0t \& 601 \& \& SI \& \& \& SLA て：9－ZDEt

\hline I \& 8¢：60 81－nf -80 \& T ¢Zİ0 \& 81－unf－IZ \& 6t10488 \& 0عI－09 \& $9 ` ¢ 6$ \& \& SI \& \& \& SxHyd－Z08I

\hline 1 \& 85：60 81－In -80 \& T scio \& $8 \mathrm{~L}-\mathrm{unf}-12$ \& 6610488 \& 0¢1－09 \& 901 \& \& SI \& \& \&

\hline I \& 8¢：60 8I－Inf－80 \& T şİ0 \& 85－un¢－IZ \& 6t10．488 \& 0عI－0L \& ¢｀¢6 \& \& SI \& \& \& VxHAd－ZコEI

\hline 1 \& 8¢：60 81－nT－80 \& TSELO \& 81－unc－12 \& 6tL0488 \& 0¢1－09 \& SCI \& \& SI \& \& \& SqAd－EDEL

\hline I \& 8¢：60 81－［n¢－80 \& T SEİ0 \& 81－unf－IZ \& 6t10488 \& 0¢L－09 \& 8.86 \& \& SI \& \& \&

\hline I \& 8C：60 81－n¢－80 \& TSEIO \& 81－miflz \& 6t10488 \& OET－09 \& 201 \& \& SI \& \& \& VGHd－EDEI

\hline uo！̣n！！${ }^{\text {a }}$ \& \& ${ }^{\text {azts duxes }}$ \& paperixa \& YP789 \& \& ${ }^{30} \mathrm{y}$ \％ \& \& \& \& \& sp．reutis proqri

\hline I \& 8¢：60 8I－［nf－80 \& T SZİ0 \& 8I－unf－IZ \& 6＋L0．38g \& 0¢L－0L \& 6IL \& 00t \& 9Lt \& 2－66－I69 \& \& GSOAPG

\hline I \& 85：60 81－7n -80 \& Tscio \& 81 －unf－12 \& 6710188 \& $0 \mathrm{EL}-02$ \& LII \& $00 t$ \& 0Lt \& L－60－8tttr \& \& GSOAPN

\hline I \& \& T SZİ0 \& 8I－unf－IZ \& $6 \mathrm{LDOA8G}$ \& OEL－0L \& t0I \& 0.08 \& でと8 \& ¢－6I－S06L9 \& \& VGx H dd

\hline I \& 85：60 81－7n -80 \& T SCLO \& $81^{-\mathrm{an}} \mathrm{L}-12$ \& 6tL0488 \& OEI－OL \& ScI \& $00 t$ \& 105 \& z－0s－ISLt \& \& VSOHT

\hline I \& 8c：60 81－［nf－80 \& T çİ0 \& 8I－unf－IZ \& 6ヤL0H8g \& OEI－ 0 L \& でし6 \& 0.08 \& L＇LL \& L－90－9LE \& \& VGPL．Ld

\hline 1 \& \& TSZI\％ \& $81-4 n \mathrm{c}-12$ \& 6710488 \& 0¢L－09 \& 0 L \& 008 \& 0.88 \& 8－6－6292L \& \& \checkmark CrLAd

\hline I \& $8 \mathrm{c}: 608 \mathrm{~s}-\mathrm{m} \mathrm{m}-80$ \& T SEİ0 \& 8I－unf－IZ \& 6 t L0488 \& OEI－0L \& LII \& 00t \& Stt \& $8-\tau \varepsilon-90 ¢ 1 \varepsilon$ \& \& VSOH2N

\hline 1 \& 85：60 8L－n $\mathrm{C}-80$ \& 1 SZLO \& \& 6710488 \& OEI－ 0 L \& でと6 \& 008 \& $9+L$ \& 1－Sc－LOE \& \& Vocas

\hline 1 \& 8¢：60 8I－［nf－80 \& T SZİ0 \& 81－unf－IZ \& 6 L L0488 \& 0¢L－09 \& 8II \& 008 \& どャ6 \& $\varepsilon-L L-\subseteq \varepsilon \varepsilon$ \& \& SGAd

\hline 1 \& 8S：60 81－nn -80 \& I creo \& $8 \mathrm{~L}-\mathrm{unf}-12$ \& 6710488 \& OEI－OL \& $9 \cdot 66$ \& 008 \& L6L \& 8－ヤ6－8S0Z \& \& Vuntd

\hline 1 \& 8¢：60 8L－［nf－80 \& T szi．0 \& 8 L －unf－Iz \& 67L048g \& OEI－0L \& S0I \& 0.08 \& 0 ＋8 \& 9－0¢－I66Z \& \& VVSOAP

\hline 1 \& 8s：60 8－$-\mathrm{Tr}-80$ \& T czeo \& 81 －unc－1z \& 6＋10488 \& OEL－OL \& 901 \& 008 \& St8 \& 6－1ع－¢¢¢z \& \& VVSOH2N

\hline I \& 8s：60 8I－［nf－80 \& \& 8 I －un C －Iz \& 6710488 \& 0¢I－09 \& 0ZI \& 0.08 \& †96 \& か－t¢－8016を \& \& SLLE Z：8

\hline I \& 8s：60 81－nT－80 \& TSELO \& $8 \mathrm{I}^{-\mathrm{unf}}-\mathrm{Tz}$ \& 6710488 \& OEL－OL \& 6.66 \& 008 \& 66 L \& て－9L－sEE \& \& Vasd

\hline 1 \& 8s：60 8I－［nf－80 \& T szio \& $8 \mathrm{~L}-\mathrm{un}$［－Iz \& 6710489 \& OEI－ 0 L \& 901 \& 008 \& L＇t8 \& I－をて－を9く】 \& \& SOHd

\hline I \& 85：60 81－nim80 \& T SELO \& 8 L －unc－Iz \& 6＋10488 \& OLI－OL \& † て6 \& 008 \& $6 . E L$ \& 9－16－tSL \& \& VSOAd

\hline I \& 8¢：60 8I－［nf－80 \& T SZİ0 \& 8I－unf－Iz \& $6+10488$ \& OEI－ 0 L \& E0I \& 0.08 \& L＇z8 \& ［－¢6－¢LE \& \& VNAd

\hline 1 \& 85：60 81－mi -80 \& 15210 \& $8 \mathrm{~L}-\mathrm{mac}-12$ \& $6710 \mathrm{H84}$ \& O¢L－ 09 \& t01 \& 008 \& 5.8 \& 8－Z6－SLE \& \& $\mathrm{Sd}^{\text {Had }}$

\hline I \& 8¢：60 8I－［n¢－80 \& T stio \& 8 I －unf－Iz \& 6 t L0－38 \& OEI－0L \& LOI \& 008 \& $\bigcirc \bigcirc 58$ \& I－L9－¢E¢ \& \& VOAd

\hline 1 \& 8s：60 81－1nc－80 \& Tscoo \& 81－unctz \& 6710488 \& Oct－09 \& 001 \& 008 \& $\uparrow 08$ \& て－L6－619Lて \& \& SLAZ：9

\hline I \& 8¢：60 8I－［n¢－80 \& ＇T czioo \& $8 \mathrm{I}-\mathrm{unf}$－Iz \& $6 \mathrm{LTOH8G}$ \& OEL－0L \& 801 \& 008 \& ¢ 98 \& t－9t－¢¢£ \& \& SxHyd

\hline 1 \& 8S：60 8t－rnc－80 \& T sze：0 \& $81^{-m n c-T z}$ \& 6710489 \& $0 \mathrm{LL}-02$ \& 066 \& 008 \& 262 \& 6－58－SLE \& \& VdHed

\hline I \& 85：60 8L－［nf－80 \& T ¢̧İ0 \& 81－unf－Iz \& 6710H8g \& OEL－ 0 L \& OII \& 008 \& L＇L8 \& か－tて－LOE \& \& VxHHd

\hline 1 \& 8s：60 81－ms -80 \& TSZIO \& $8 \mathrm{~L}-\mathrm{min}-12$ \& 6t10488 \& OEL－0L \& 001 \& 008 \& て：08 \& S－EL－SLE \& \& Sgad

\hline 1 \& 85：60 8L－In $5-80$ \& T SZİ0 \& 81－unf－Iz \& 6†10488 \& OEI－0L \& E0I \& 0.08 \& ¢＇z8 \& £－06－90Lて \& \& VadAd

\hline I \& 85：60 81－nm -80 \& T GzLO \& $8 \mathrm{~L}-\mathrm{minctz}$ \& 6710.188 \& $0 \mathrm{CL}-\mathrm{OL}$ \& t01 \& 008 \& 0. ¢8 \& \dagger－Zz－SLE \& \& VGAd

\hline u0！ \& pazijpuy \& ${ }^{\text {azis dues }}$ \& р3ұ0． 19×7 \& ¢フ789 \& \& ${ }^{30} \mathrm{y} \%$ \& fuv Pu！${ }^{\text {dids }}$ \& \& ．roqumin SVo \& \&

\hline \& 81О HGg \& ： u unio〕 \& \& -6 tI088g \& \& \& snoanbV \& ：$\times 1$ пре \& \& | I6IE HN 69828I |
| :--- |
| | \&

\hline \multicolumn{3}{|l|}{} \& \& \& \& \& \& \& \multicolumn{3}{|l|}{UdO ：OI əldues}

\hline
\end{tabular}

						${ }^{\text {Taw }}$ of parrodar splysoy				
I	0ع:01 8!-nnc-80	T 0 İ 0	$8 \mathrm{I}-\mathrm{unf}$ - Iz	6-10489		OSI-0I	I'LE			ESOHPG-6p
I	0¢:018L-Inc-80	10210	$8 \mathrm{r}-\mathrm{unf} \mathrm{C}$	6710488		OSI-0I	LLE	SI		GSOAPW-LP
I	0¢:01 8I-Inf-80	T0zİ0	8I-unf-Iz	6710488		OSI-OZ	L'86	SI		
I	0ع:01 8I-In -80	T0210	$85-\mathrm{ma}$	6t10488		OSI 01	$\varepsilon \square$	SI		VSOHF-cp
I	0ع:01 8L-nn -80	Tozto	$8 \mathrm{~L}-\mathrm{unf}$-IZ	6tI0488		0¢I-0Z	$9+8$	SI		VGアLJd-Zวย1
1	0ع:01 81-TIT-80	Tozlo	$8 \mathrm{~L}-\mathrm{mm}-12$	6710484	H	O\&I-OI	$0<6$	SI		VSOH2N-¢P
I	0¢:01 8L- $\mathrm{n}^{\mathrm{n}} \mathrm{C}-80$	T OZİ0	$8 \mathrm{I}-\mathrm{un} \mathrm{f}-\mathrm{Iz}$	6710488		OEI-0E	8 21	SI		Vognd-zวe I
1	0ع:0L 81-nT-80	Toze 0	$8 \mathrm{~L}-\mathrm{mm}$	6710488		0¢1-09	292	SI		
1		Tozt.0	81-unf-Iz	6tl0-38		OSI - 0 S	I.¢6	SI		VVSOHTH-¢P
I	08:01 81-rtir-80	70250	$8 L^{-a n c}-1 z$	6†10488		OSI - OS	EOL	SI		VVSOSPW-Ep
I	$0 \varepsilon: 0181-n ¢ 1-80$	Tozio	81-unf-LZ	6710488		0SI-0t	III	SI		SLJ z:8-Zวย1
1	OE:01 81-mI-80	10210	$8 \mathrm{~L}-\mathrm{unc}-12$	$6+10.888$		0¢1-09	S\%6	SI		VGAd-Zэ¢!
uo! ${ }^{\text {m }}$!!	paz¢jeuy	${ }^{\text {azis durs }}$		YP789	S.19!! ${ }^{\text {end }}$	sl!u!T		${ }^{\text {d }} \mathrm{K}_{\mathrm{L}}$		puets porpqrit
	8LD Hag	:umbio	$\begin{array}{r} 8 \mathrm{I}: 0 \mathrm{I} \\ \mathrm{ZO} \end{array}$	$\begin{aligned} & 8 \mathrm{I}-\mathrm{un} \mathrm{f}-\mathrm{bl} \\ & -997 \mathrm{I} 08 \mathrm{I} \end{aligned}$	```:рәл!әэәу әұеп :әdures qeT```	00:00 8I-unf-L0 snoanby			69828I 	:pooror :әuren
poqfonk uolp IIG ədoqosI SVAd								YueIg गqunl SVEd : 1 I Pdurs		

Sample ID: PFAS Tumble Blank

analytes.

UdO : ©II Pdures

总

DATA QUALIFIERS \& ABBREVIATIONS

B	This compound was also detected in the method blank
Conc.	Concentration
D	Dilution
DL	Detection limit
E	The associated compound concentration exceeded the calibration range of the instrument
H	Recovery and/or RPD was outside laboratory acceptance limits
I	Chemical Interference
J	The amount detected is below the Reporting Limit/LOQ
LOD	Limits of Detection
LOQ	Limits of Quantitation
M	Estimated Maximum Possible Concentration (CA Region 2 projects only)
NA	Not applicable
ND	Not Detected
Q	Ion ratio outside of 70-130\% of Standard Ratio. (DOD PFAS projects only)
TEQ	Toxic Equivalency
U	Not Detected (specific projects only)
*	See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	$17-013$
Arkansas Department of Environmental Quality	$17-015-0$
	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-18
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2016026
Minnesota Department of Health	1322288
New Hampshire Environmental Accreditation Program	207717
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Oregon Laboratory Accreditation Program	$4042-008$
Pennsylvania Department of Environmental Protection	014
Texas Commission on Environmental Quality	T104704189-17-8
Virginia Department of General Services	9077
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.
 As a subcontract lab to EAI, you will defend, indemnify and hold Eastern Analytical, inc, its officers, employees, and agents harmless from and against any and allliability, loss, expense or claims for injury or damages Eastern Analytical, Inc. 25 Chenell Dr. Concord, NH 03301 Phone: (603)228-0525 1-800-287-0.0525

 \&TP-1, TP-3, PFAS Tumble Blank and Blank tumbled for
 Email login confirmation; pdf of results and Notes about project. $\mathrm{dOW} \forall \mathrm{Q} \square \quad \square \quad+\mathrm{g} \square \mathrm{a} \square+\forall \square \quad \forall \boxtimes$ \longrightarrow :әце ona HSny

 Kq pousumbunay
 tigallos sodures analyzing.
 698781 \#CI HE

 arising ouf of the performance against this chain of custody but only in proportion to and to the extent such liability, loss, expense, or claims for injury or damages are caused by or result from the negligent or intentional As a subcontract lab to EAl, you will defend, indemnify and hold Eastern Analytical, Inc., its officers, employees, and agents harmless from and against any and all liability, loss, expense or claims for injury or damages

Email login confirmation, pdf of results and
 dON $\forall W \square O \square+G \square \quad 日 \square+\forall \square \quad \forall \square$ prepueis :aneq pourpoud :popoonstinsag
 Page 30 of 32
Phone (916) 673-1520 \# junoove
Address El Dorado Hills, CA 95762 Address 1104 Windfield Way
Company Vista Analytical Laboratory 69828. \# $\mathrm{Cl|l|}$

ayOOヨy גOOLSn0-JO-NIVHO

*

$$
I D .: L R-S L C
$$

$$
\begin{aligned}
& \text { INUENTORY: } \\
& \text { coc: MERRIMACK RINER } \\
& \text { PFAS TUMBLE GANK } \\
& \text { TP-1 } \\
& \text { TP-1 } \\
& \text { TP- } 3 \\
& \text { TP-3 } \\
& \text { SAMPLE 10: MERRMACK } \times 2 \quad(125 \mathrm{~mL}) \\
& \text { PFAS TVMBLEBLANK } \times 2(125 \mathrm{ml}) \\
& T P-1 \times 2(125 \mathrm{ml}) \\
& \text { TP-1 } * 2 \text { (602) } \\
& \begin{array}{ll}
\text { TP- } 3 \times 2 & (125 \mathrm{mi})
\end{array} \\
& T P-3 \times 2 \text { (602) }
\end{aligned}
$$

Client: Eastern Analytical, Inc.
Contact: Jennifer Laramie
Email: JenniferL@eailabs.com
Phone: (603) 410-3881

Workorder Number: 1801266
Date Received: 14-Jun-18 10:18
Documented by/date: K. Elric 06/14/18

Please review the following information and complete the Client Authorization section. To comply with NELAC regulations, we must receive authorization before proceeding with sample analysis.

Thank you,
Martha Maser
mmaier@vista-analytical.com
916-673-1520

The following information or item is needed to proceed with analysis:

The following anomalies were noted. Authorization is needed to proceed with analysis.
\square Temperature outside $<6^{\circ} \mathrm{C}$ Range

Samples Affected:
Temperature \qquad ${ }^{\circ} \mathrm{C}$

Ice Present?
Yes No
o Melted

Sample ID Discrepancy
Sample Holding Time Missed
Custody Seals Broken

Insufficient Sample Size
Sample Containers) Broken
Incorrect Container Type

Comments:

Received 7 samples, COC lists 6 samples.
Sample not listed on COC:
Eastern ID\# 182869.05 Blank

Client Authorization

Proceed with Analysis: YES NO
Signature and Date

6/25/18
Client Comments/Instructions Per Ven Laramie, do not analyze extra blank received w/ sample

\square

$$
\begin{array}{l|l}
1 \text { 1-3 } & 1245 \\
M \text { Merrimach Rive } 15: 20
\end{array}
$$

Matrix: A-AII; , Waste water

$$
\frac{T P-1}{T P-3}
$$

 $81+251-b$ HSINI- 8 LYVIS ヨlisodWOつ $\boldsymbol{J l}_{*}$ $\exists W I \perp / \exists \perp \forall \square$ DNITdWVS

$$
1-d 1
$$ ह sw

$M_{\text {atr }}$
Grab $^{2} 4.2$
524.2 BTEX 524.2 MTBE ONY I, 4 Dioxane
8021B BTEX HALOS
80I5B GRO MAVPH

$8270 D$	625	SVTICS EDB	DBCP	
ABN	A	BN	PAH	

TPH8100 LI L2
8015B DRO MAEPH
PEST 608
PEST 8081A PCB 8082
OIL \& Grease 1664 TPH 1664
TCLP I3II ABN METALS

DISSOLVED Metals (LISt BELOW)
total Metals (LIst Below)

											TS TSS TDS SPEC. Con.
											$\begin{array}{llcc} \hline \mathrm{BR} & \mathrm{Cl} & \mathrm{~F} & \mathrm{SO}_{4} \\ \mathrm{NO}_{2} & \mathrm{NO}_{3} & \mathrm{NO}_{3} \mathrm{NO}_{2} \\ \hline \end{array}$
											BOD CBOD T. ALK.
											TKN $\quad \mathrm{NH}_{3} \quad$ T. Phos. $\quad 0$. Phos.
											pH T. Res. Chiorine
											COD PheNols TOC DOC
											Total Cyande Total Sulifid
											Reactive Cyande $\begin{aligned} & \text { Reactive Sulfide } \\ & \text { Flashpoint } \\ & \text { IGMitability }\end{aligned}$
											Total Coliform E. COLI Fecal Coliform
											Enterococa Heterotrophic Plate Count
											See atleched
											$x^{2} \text { outc }$
											101487
									4	UN	

Eastern Analytical, Inc. 3 of 3 Quotation 1014671
Jeffrey Marts
Emery \& Garrett Groundwater Investigations, LLC
56 Main Street
Meredith, NH 03253
Dear Mr. Marts :
Thank you for the opportunity to provide this quotation.
Qty. Description
2 SPLP (1312) Prep (modified - tumble water \& specs
3 DOC (Aqueous)
3 UV Absorption
3 pH
3 Color (True)
3 Filter Fee (Inorganic), $0.45 \mu \mathrm{~m}$ filter
3 Subcontract - PFCs/PFAS EPA Method 537-26 Cmpd
2 Subcontract - PFAS Filter Fee
1 Overnight Shipping to Subcontract Lab (est. 15 lbs -
3 Metals Aqueous Prep
3 Calcium
3 Iron
3 Manganese
3 Arsenic
2 Subcontract - PFCs/PFAS EPA Method 537-26 Cmpd
0 Subcontract - PFAS Centrifuging (if necessary)
Quotation Date: 7/5/2017
析18
Project ID: PFAS Leachability ProjectRevised 6/5/2018 JLL
EAI Project ID:

AR2 PFAS MONITORING WELL MER 45-AR2

professional laboratory and drilling services
Daniel Tinkham
Emery \& Garrett Groundwater Investigations,56 Main Street
Meredith NH 03253

Eastern Analytical, Inc. ID: 185312
Client Identification: MER-45
Date Received: 8/9/2018

Dear Mr. Tinkham :

Enclosed please find the report of analysis for the above identified project. As discussed, analyses were subcontracted and are listed as follows:

Analysis: Subcontract - Perfluorinated Compounds EPA Method 537 Vista
Subcontractor Lab: Vista Analytical Laboratory

A complete copy of the report is attached. This report may not be reproduced except in full, without the written approval of the laboratory.

We appreciate this opportunity to be of service and look forward to your continued patronage.

Sincerely,

Lorraine Olashaw, Lab Director

Date

\# of pages (excluding cover letter)

Λ

 Client: Emery \& Garrett Groundwater Investigations, LLC (NH)

 Client: Emery \& Garrett Groundwater Investigations, LLC (NH)

 Client Designation: MER-45

 Client Designation: MER-45}

Temperature upon receipt $\left({ }^{\circ} \mathrm{C}\right): 1.7$
Acceptable temperature range $\left({ }^{\circ} \mathrm{C}\right)$: 0-6
Lab ID Sample ID
185312.01 MER-45-AR2

Received on ice or cold packs (Yes/No): Y

Date Date Sample \% Dry

Received Sampled Matrix Weight Exceptions/Comments (other than thermal preservation)
8/9/18 $\quad 8 / 9 / 18$ aqueous Adheres to Sample Acceptance Policy

Samples were properly preserved and the pH measured when applicable unless otherwise noted. Analysis of solids for pH, Flashpoint, Ignitability, Paint Filter, Corrosivity, Conductivity and Specific Gravity are reported on an "as received" basis.
Immediate analyses, pH , Total Residual Chlorine, Dissolved Oxygen and Sulfite, performed at the laboratory were run outside of the recommended 15 minute hold time.
All results contained in this report relate only to the above listed samples.
References include:

1) EPA 600/4-79-020, 1983
2) Standard Methods for Examination of Water and Wastewater, 20th, 21st, 22nd \& 23rd Edition or noted Revision year.
3) Test Methods for Evaluating Solid Waste SW 846 3rd Edition including updates IVA and IVB
4) Hach Water Analysis Handbook, 4th edition, 1992

Eastern Analytical, Inc. www.easternanalytical.com | 800.287.0525|customerservice@easternanalytical.com

Ms. Jennifer Laramie

Eastern Analytical, Inc.
25 Channel Drive
Concord, NH 03301
Dear Ms. Laramie,
Enclosed are the results for the sample set received at Vista Analytical Laboratory on August 14, 2018 under your Project Name '185312 NH'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Mazer Laboratory Director

Vista Work Order No. 1802440

Case Narrative

Sample Condition on Receipt:

One aqueous sample was received in good condition and within the method temperature requirements. The sample was received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

PFAS Isotope Dilution Method

The sample was extracted and analyzed for a selected list of PFAS using Modified EPA Method 537. The results for PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Results for all other analytes include the linear isomers only.

Holding Times

The sample was extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above the Reporting Limit. The OPR recoveries were within the method acceptance criteria.

The recoveries of all internal standards in the QC and field samples were within the acceptance criteria.

Table of Contents

Case Narrative 1
Table of Content 3
Sample Inventory 4
Analytical Results 5
Qualifiers 9
Certifications 10
Sample Receipt 11

Sample Inventory Report

| Vista
 Sample ID | Client |
| :--- | :---: | :---: | :---: | :---: |
| Sample ID | |\quad Sampled \quad Received \quad Components/Containers

ANALYTICAL RESULTS

I	OLTL 81－8nV－${ }^{\text {ch }}$	TZZIO	$8 L^{-\sin V-91}$	9110H88		OSI－0Z	$6 \% \mathrm{~L}$	SI		VGəLud－Zo¢
I	0I：II 8I－8ึn $V-\varepsilon z$	T 2 ［10	8I－8nท－9］	91I0H89		$0 \varepsilon I-0 \varepsilon$	S＇IL	SI		\vee°
I	$01: 1181-80 \vee-\varepsilon \tau$	Tでっ\％	$81-807491$	9110H88		0¢L－09	IOL	SI		Vanhd－zoct
I	01：II 8I－8nv－をz	T ZZI「0	8I－sึn $V-9 \mathrm{I}$	9150H88		OSI－0S	$\angle 6 L$	SI		VVSOHㄱ－¢p
1	O1LL $81-8 n v-\varepsilon z$	TZZ10	$8 \mathrm{I}-8 \mathrm{n} v-91$	91L0H88		OST－OS	2 SL	SI		\checkmark SSOHəN－ $\mathrm{P}^{\text {P }}$
I	01：LI 8I－8̇n V－EZ	T ZZI＇0	8 ［－8n $V-9$ I	91L0H8G		0\＆I－09	589	SI		VGHd－zวย
I		T てZIO	8I－8inv－9I	91L0H88		OEI－09	†96	SI		SOHd－80¢L
I	01：II 81－oึnv－ç	T Z I「0	$8 \mathrm{I}-$－8n $V-9 \mathrm{I}$	91L0H88		OEI－OS	E．8L	SI		VNHd－¢DE
I	OT：L1 $8 \mathrm{l}-8 \mathrm{n} V-\varepsilon \tau$	TZZL0	$81-8 n y-91$	9150H88		0ع1－09	8 ± 8	SI		VOAd－zoct
I		T Z İ0	81－8ิn －$^{\text {－9 }}$	9110H88		0\＆L－09	006	SI		SxHAd－2O8I
1	$01: 1181-80 \sim-\varepsilon \tau$	T ZZIO	$81-$－nv－91	9110H88		Oct－09	L68	SI		VdHUd－toci
I	01：II 8I－snv－cz	T ZZI＇0		9150H88		OEI－ 02	± 06	SI		
1		TZで0	$8 \mathrm{I}-8 \mathrm{n} v-91$	9110H88		OSL－09	LOL	SI		S氏日d－EวEL
I		T ZZI「0		9110H88		0SI－09	876	SI		V0dปd－६วย
I	OLIT $81-3 n v-\varepsilon \tau$	TZZI0	$81-8 n 7-91$	9LIOH88		$0 E T-09$	を＇26	SI		VGAD－EDEI
uolm ${ }^{\text {a }}$ ！${ }^{\text {a }}$	1 pazKjbuy	จz！S durs		YP7\％g	S．ay！！${ }^{\text {a }}$	Sl！w！	R．İno3ay \％	$\boldsymbol{o d K}_{\mathbf{L}}$		sp．repuris proqe7
I	0I：II 8I－8nท－をZ	TZZİ0	8－88nv－9］	9110H88	0 I		GN	L－90－9LE		VG ${ }^{\text {J L }}$ ，
1	OLIL 8L－8nv－cz	TZZFO	$8 \mathrm{l}-\mathrm{8n} V-9 \mathrm{l}$	9110H88	01		वN	8－66－6792L		VOHLS
I		T ZZI＇0		9150H88	01		UN	I－Sc－L0E		$\nabla^{\circ} \mathrm{Cadd}$
1	OLLL $8 \mathrm{I}-\frac{1 n v-\varepsilon \tau}{}$	TZZF0	$8 \mathrm{~L}-6 \mathrm{n}$－95	9LLOH88	01		CN	8－76－8S02		Vuntd
I	01：II 8I－sn $V-\varepsilon z$	T Z LI．0	8I－8nv－9I	9110H8g	01		GN	9－0¢－I66Z		VVSOHP
1	$01: 1581-80 \sim-\varepsilon z$	TZZ10	$8 \mathrm{I}-8 n \downarrow-91$	$9110 \mathrm{H88}$	01		CN	6－1E－Sc\＆		VVSOHDN
I	01：II 81－onv－${ }^{\text {ch }}$	T ZZI．0	8I－8ิท ${ }^{\text {－}}$－9I	9110H88	01		GN	て－9L－¢ $¢ \varepsilon$		VGAd
I	OLIT $81-8 n v-E Z$	TZZ10	$81-8 n v-91$	$9110 \mathrm{H88}$			CN	I－Ez－E9LI		SOHd
I	01：IL 8I－ôn $V-\varepsilon Z$	T Z I 0	8［－8nv－9］	9110H88	01		GN	［－¢6－¢ -18		VNHd
I	0ILI 8L－nnv－cz	T 2 \％10	$8 \mathrm{I}-83 \mathrm{~V}-91$	9110H88	01		688	I－L9－sce		VOAd
I		T Z T10	8I－8nv－9］	9110H88	01		GN	t－9t－¢¢		SxHyd
1	OLTL 81－8nv－cz	TZZI0	$8 \mathrm{~L}-8 \mathrm{n} V-91$	9110H88	01		$9{ }^{\prime} 8$	6－58－LLE		\checkmark dHad
I	OI：LI 8I－8ิn $V-\varepsilon$ ¢	T 2 L「0	8 ［－8nv－9］	9110H88	0 I		$\checkmark \mathcal{L}$	も－ャて－L0¢		$\checkmark \times \mathrm{H} \boldsymbol{4}$
1	0LLT $81-8 n v-\varepsilon z$	T 2710	$8 \mathrm{I}-8 \mathrm{n} V-9 \mathrm{I}$	$9110 \mathrm{H88}$	01		901	S－EL－SLE		SGHd
I		T Z Z ${ }^{\text {º }}$	8 ［－80\％－9］	91L0H8G	0 I		カャ6	£－06－90LZ		VodHd
1	01TL $81-80 \sim-\varepsilon z$	TZZLO	$8 \mathrm{~L}-\mathrm{-n}-9 \mathrm{C}$	9110H88	01		97 S	\checkmark ZZ－SLE		VGAd
uo！${ }^{\text {n！！}}$	I pazKjuuy	əz！S dues		чア7\％g	S．roy！ien ${ }^{\text {a }}$		（T／ธิu）＇3u0	$.12 q u m ~_{\text {N }}$ SVO		
	－8ID HFG	：umiob			：рәл！̣әәу әұеવ ：：әdues qe＇T 	§0：01 8I－8nท－60 snoənb V			HN ZIES8I 	

DATA QUALIFIERS \& ABBREVIATIONS

B	This compound was also detected in the method blank
Conc.	Concentration
D	Dilution
DL	Detection limit
E	The associated compound concentration exceeded the calibration range of the instrument
H	Recovery and/or RPD was outside laboratory acceptance limits
I	Chemical Interference
J	The amount detected is below the Reporting Limit/LOQ
LOD	Limits of Detection
LOQ	Limits of Quantitation
M	Estimated Maximum Possible Concentration (CA Region 2 projects only)
NA	Not applicable
ND	Not Detected
Q	Ion ratio outside of 70-130\% of Standard Ratio. (DOD PFAS projects only)
TEQ	Toxic Equivalency
U	Not Detected (specific projects only)
*	See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	$17-013$
Arkansas Department of Environmental Quality	$17-015-0$
	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-18
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2016026
Minnesota Department of Health	1322288
New Hampshire Environmental Accreditation Program	207717
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Oregon Laboratory Accreditation Program	$4042-008$
Pennsylvania Department of Environmental Protection	014
Texas Commission on Environmental Quality	T104704189-17-8
Virginia Department of General Services	9077
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.
ZL Jo LI อธิ์
 As a subcontrach and and and and and liability，loss，expense or claims for injury or damages

Vista Work Order \#: \qquad 0
TAT \qquad

Comments:

（צヨOVNVW Lכ彐IOUd ：NEBZD TVNIDIUO ：ヨLIHM）
up pud fuloұbuqpl 1 puolsssand

 \＃1370018 E－MAL：\quad eggi＠eggr．con
SITE NaME：Mifs PHoNE： $603-279-8425$
FAX：\quad MAl：eggi＠eggi．com City：Pleveditf Star：Nlt IIP：O2253
 Project manager：Dan Tintharo䍂 Field Readings： Suspected Contanination： \longrightarrow ：NOOLSH 3lls

Scpry ws． 1

PFAS 16 compound list Notes：（II：SPecial Detection Limits，Billing Info，If Different） Samples Field Filtered？\square Yes $\bigotimes_{\text {No }}$ ：STVIEW Y：H10 Metals： 8 RCRA 13 PP Fe，Mn $\quad \mathrm{Pb}, \mathrm{Cu}$ Preservarive： $\mathrm{H}-\mathrm{HCL} ; \mathrm{N}^{2} \mathrm{HNO}_{3} ; \mathrm{S}_{2} \mathrm{H}_{2} \mathrm{SO}_{4} ; \mathrm{Na}-\mathrm{NaOH} ; \mathrm{M}-\mathrm{MEOH}$ Watiix．WW－WASTE Water | | | |
| :--- | :--- | :--- |
| Matril：A－AIR；S－SOLL；GW－Ground Water；SW－Sunface Water；DW－Drinking Water； | | | －

APPENDIX D

WATER QUALITY RESULTS FROM TEST WELLS

Client:

Ordered By:
Emery \& Garrett Groundwater Investigations,
LLC
56 Main Street
Meredith, NH 03253
ATTN: Emery \& Garrett Groundwater Inc.

Sample Number:

887711

Location: MER-45-AR1

Type of Water: Well Water
Collection Date and Time: 8/9/2018 12:15 PM
Received Date and Time: 8/10/2018 10:05 AM
Date Completed: 8/28/2018
Metals filtered
0.5 hr test

Definition and Legend

This informational water quality report compares the actual test result to national standards as defined in the EPA's Primary and Secondary Drinking Water Regulations.
Primary Standards: Are expressed as the maximum contaminant level (MCL) which is the highest level of contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary standards: Are non-enforceable guidelines regulating contaminants that may cause cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste, odor,or color) in drinking water. Individual states may choose to adopt them as enforceable standards.
Action levels: \quad Are defined in treatment techniques which are required processes intended to reduce the level of a contaminant in drinking water.
$\mathrm{mg} / \mathrm{L}(\mathrm{ppm}): \quad$ Unless otherwise indicated, results and standards are expressed as an amount in milligrams per liter or parts per million.

Minimum Detection The lowest level that the laboratory can detect a contaminant.
Level (MDL):
ND: The contaminant was not detected above the minimum detection level.
NA:
The contaminant was not analyzed.
The contaminant was not detected in the sample above the minimum detection level.
The contaminant was detected at or above the minimum detection level, but not above the referenced standard.

The contaminant was detected above the standard, which is not an EPA enforceable MCL.
The contaminant was detected above the EPA enforceable MCL.

These results may be invalid.

Status	Contaminant	Results	Units	National Standards	Min. Detection Level	
$\widehat{\nu}$	pH	5.8	pH Units	6.5 to 8.5	EPA Secondary	
	Total Dissolved Solids	640	mg/L	500	EPA Secondary	20
	Turbidity	ND	NTU	1.0	EPA Action Level	0.1
Inorganic Analytes - Other						
	Bromide	ND	mg/L	--		0.5
	Chloride	370.0	mg/L	250	EPA Secondary	5.0
$\sqrt{ }$	Fluoride	ND	mg/L	4.0	EPA Primary	0.5
	Nitrate as N	1.5	mg / L	10	EPA Primary	0.5
	Nitrite as N	ND	mg/L	1	EPA Primary	0.5
\checkmark	Ortho Phosphate	ND	mg/L	--		2.0
	Sulfate	12.0	mg/L	250	EPA Secondary	5.0
Organic Analytes - Trihalomethanes						
$\sqrt{ }$	Bromodichloromethane	ND	mg/L	--		0.002
	Bromoform	ND	mg/L	--		0.004
\checkmark	Chloroform	ND	mg/L	--		0.002
,	Dibromochloromethane	ND	mg/L	--		0.004
$\sqrt{ }$	Total THMs	ND	mg/L	0.080	EPA Primary	0.002
Organic Analytes - Volatiles						
$\sqrt{ }$	1,1,1,2-Tetrachloroethane	ND	mg/L	--		0.002
\checkmark	1,1,1-Trichloroethane	ND	mg/L	0.2	EPA Primary	0.001
\checkmark	1,1,2,2-Tetrachloroethane	ND	mg/L	--		0.002
\checkmark	1,1,2-Trichloroethane	ND	mg/L	0.005	EPA Primary	0.002
\checkmark	1,1-Dichloroethane	ND	mg/L	--		0.002
\checkmark	1,1-Dichloroethene	ND	mg/L	0.007	EPA Primary	0.001
\checkmark	1,1-Dichloropropene	ND	mg/L	--		0.002
\checkmark	1,2,3-Trichlorobenzene	ND	mg/L	--		0.002
\checkmark	1,2,3-Trichloropropane	ND	mg/L	--		0.002
\checkmark	1,2,4-Trichlorobenzene	ND	mg/L	0.07	EPA Primary	0.002

Status	Contaminant	Results	Units	National Standards		Min. Detection Level
\checkmark	1,2-Dichlorobenzene	ND	mg/L	0.6	EPA Primary	0.001
$\sqrt{ }$	1,2-Dichloroethane	ND	mg/L	0.005	EPA Primary	0.001
$\sqrt{0}$	1,2-Dichloropropane	ND	mg/L	0.005	EPA Primary	0.002
\checkmark	1,3-Dichlorobenzene	ND	mg/L	--		0.001
$\sqrt{0}$	1,3-Dichloropropane	ND	mg/L	--		0.002
\checkmark	1,4-Dichlorobenzene	ND	mg/L	0.075	EPA Primary	0.001
V	2,2-Dichloropropane	ND	mg/L	--		0.002
\checkmark	2-Chlorotoluene	ND	mg/L	--		0.001
V	4-Chlorotoluene	ND	mg/L	--		0.001
V	Acetone	ND	mg/L	--		0.01
V	Benzene	ND	mg/L	0.005	EPA Primary	0.001
$\sqrt{0}$	Bromobenzene	ND	mg/L	--		0.002
\checkmark	Bromomethane	ND	mg/L	--		0.002
\checkmark	Carbon Tetrachloride	ND	mg/L	0.005	EPA Primary	0.001
$\sqrt{ }$	Chlorobenzene	ND	mg/L	0.1	EPA Primary	0.001
$\sqrt{0}$	Chloroethane	ND	mg/L	--		0.002
V	Chloromethane	ND	mg/L	--		0.002
$\sqrt{ }$	cis-1,2-Dichloroethene	ND	mg/L	0.07	EPA Primary	0.002
$\sqrt{ }$	cis-1,3-Dichloropropene	ND	mg/L	--		0.002
$\sqrt{ }$	DBCP	ND	mg/L	--		0.001
$\sqrt{ }$	Dibromomethane	ND	mg/L	--		0.002
\checkmark	Dichlorodifluoromethane	ND	mg/L	--		0.002
\checkmark	Dichloromethane	ND	mg/L	0.005	EPA Primary	0.002
\checkmark	EDB	ND	mg/L	--		0.001
\checkmark	Ethylbenzene	ND	mg/L	0.7	EPA Primary	0.001
\checkmark	Methyl Tert Butyl Ether	ND	mg/L	--		0.004
\checkmark	Methyl-Ethyl Ketone	ND	mg/L	--		0.01
\checkmark	Styrene	ND	mg/L	0.1	EPA Primary	0.001
Page 4	of $6 \quad 8 / 28 / 2018$ 2:20:12				Watercheck w/PO	Sample: 887711

Status	Contaminant	Results	Units	National Standards		Min. Detection Level
\checkmark	Tetrachloroethene	ND	mg/L	0.005	EPA Primary	0.002
$\sqrt{ }$	Tetrahydrofuran	ND	mg/L	--		0.01
$\sqrt{0}$	Toluene	ND	mg/L	1	EPA Primary	0.001
\checkmark	trans-1,2-Dichloroethene	ND	mg/L	0.1	EPA Primary	0.002
$\sqrt{0}$	trans-1,3-Dichloropropene	ND	mg/L	--		0.002
\checkmark	Trichloroethene	ND	mg/L	0.005	EPA Primary	0.001
$\sqrt{0}$	Trichlorofluoromethane	ND	mg/L	--		0.002
$\sqrt{ }$	Vinyl Chloride	ND	mg/L	0.002	EPA Primary	0.001
$\sqrt{ }$	Xylenes (Total)	ND	mg/L	10	EPA Primary	0.001
	Organic Analytes - Others					
$\sqrt{ }$	2,4-D	ND	mg/L	0.07	EPA Primary	0.010
$\sqrt{ }$	Alachlor	ND	mg/L	0.002	EPA Primary	0.001
$\sqrt{ }$	Aldrin	ND	mg/L	--		0.002
$\sqrt{ }$	Atrazine	ND	mg/L	0.003	EPA Primary	0.002
$\sqrt{0}$	Chlordane	ND	mg/L	0.002	EPA Primary	0.001
V	Dichloran	ND	mg/L	--		0.002
$\sqrt{ }$	Dieldrin	ND	mg/L	--		0.001
$\sqrt{ }$	Endrin	ND	mg/L	0.002	EPA Primary	0.0001
$\sqrt{7}$	Heptachlor	ND	mg/L	0.0004	EPA Primary	0.0004
\checkmark	Heptachlor Epoxide	ND	mg/L	0.0002	EPA Primary	0.0001
\checkmark	Hexachlorobenzene	ND	mg/L	0.001	EPA Primary	0.0005
\checkmark	Hexachlorocyclopentadiene	ND	mg/L	0.05	EPA Primary	0.001
$\sqrt{ }$	Lindane	ND	mg/L	0.0002	EPA Primary	0.0002
\checkmark	Methoxychlor	ND	mg/L	0.04	EPA Primary	0.002
\checkmark	Pentachloronitrobenzene	ND	mg/L	--		0.002
\checkmark	Silvex 2,4,5-TP	ND	mg/L	0.05	EPA Primary	0.005
\checkmark	Simazine	ND	mg/L	0.004	EPA Primary	0.002
\checkmark	Total PCBs	ND	mg/L	0.0005	EPA Primary	0.0005
Page 5	of $6 \quad$ 8/28/2018 2:20:12 PM				Watercheck w/PO	Sample: 887711

$\left.\begin{array}{llllll}\text { Status } & \text { Contaminant } & \text { Results } & \text { Units } & \text { National Standards } & \text { Min. Detection Level } \\ \hline & \text { Toxaphene } & \mathrm{ND} & \mathrm{mg} / \mathrm{L} & 0.003 & \text { EPA Primary }\end{array}\right] 0.001$

We certify that the analyses performed for this report are accurate, and that the laboratory tests were conducted by methods approved by the U.S. Environmental Protection Agency or variations of these EPA methods.

These test results are intended to be used for informational purposes only and may not be used for regulatory compliance.
National Testing Laboratories, Ltd.
NATIONAL TESTING LABORATORIES, LTD
Client:

Ordered By:
Emery \& Garrett Groundwater Investigations,
LLC
56 Main Street
Meredith, NH 03253
ATTN: Emery \& Garrett Groundwater Inc.

Sample Number:	887712
Location:	MER-45-AR2
Type of Water:	Well Water
Collection Date and Time:	$8 / 9 / 2018$ 10:05 AM
Received Date and Time:	$8 / 10 / 201810: 05$ AM
Date Completed:	$8 / 28 / 2018$
Metals Filtered	
0.5 hr ptest	

Definition and Legend

This informational water quality report compares the actual test result to national standards as defined in the EPA's Primary and Secondary Drinking Water Regulations.
Primary Standards: Are expressed as the maximum contaminant level (MCL) which is the highest level of contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary standards: Are non-enforceable guidelines regulating contaminants that may cause cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste, odor,or color) in drinking water. Individual states may choose to adopt them as enforceable standards.
Action levels: \quad Are defined in treatment techniques which are required processes intended to reduce the level of a contaminant in drinking water.
$\mathrm{mg} / \mathrm{L}(\mathrm{ppm}): \quad$ Unless otherwise indicated, results and standards are expressed as an amount in milligrams per liter or parts per million.

Minimum Detection The lowest level that the laboratory can detect a contaminant.
Level (MDL):
ND: The contaminant was not detected above the minimum detection level.
NA:
The contaminant was not analyzed.
The contaminant was not detected in the sample above the minimum detection level.
The contaminant was detected at or above the minimum detection level, but not above the referenced standard.

The contaminant was detected above the standard, which is not an EPA enforceable MCL.
The contaminant was detected above the EPA enforceable MCL.

These results may be invalid.

Status	Contaminant	Results	Units	National Standards		Min. Detection Level
	pH	5.8	pH Units	6.5 to 8.5	EPA Secondary	
	Total Dissolved Solids	860	mg/L	500	EPA Secondary	20
$\sqrt{ }$	Turbidity	ND	NTU	1.0	EPA Action Level	0.1
	Inorganic Analytes - Other					
	Bromide	0.9	mg/L	--		0.5
	Chloride	520.0	mg/L	250	EPA Secondary	5.0
	Fluoride	ND	mg/L	4.0	EPA Primary	0.5
	Nitrate as N	1.5	mg/L	10	EPA Primary	0.5
	Nitrite as N	ND	mg / L	1	EPA Primary	0.5
$\sqrt{ }$	Ortho Phosphate	ND	mg / L	--		2.0
	Sulfate	14.0	mg/L	250	EPA Secondary	5.0
Organic Analytes - Trihalomethanes						
\checkmark	Bromodichloromethane	ND	mg/L	--		0.002
$\sqrt{ }$	Bromoform	ND	mg/L	--		0.004
$\sqrt{ }$	Chloroform	ND	mg / L	--		0.002
	Dibromochloromethane	ND	mg/L	--		0.004
	Total THMs	ND	mg/L	0.080	EPA Primary	0.002
Organic Analytes - Volatiles						
\checkmark	1,1,1,2-Tetrachloroethane	ND	mg/L	--		0.002
\checkmark	1,1,1-Trichloroethane	ND	mg/L	0.2	EPA Primary	0.001
\checkmark	1,1,2,2-Tetrachloroethane	ND	mg/L	--		0.002
\checkmark	1,1,2-Trichloroethane	ND	mg/L	0.005	EPA Primary	0.002
\checkmark	1,1-Dichloroethane	ND	mg/L	--		0.002
\checkmark	1,1-Dichloroethene	ND	mg/L	0.007	EPA Primary	0.001
\checkmark	1,1-Dichloropropene	ND	mg/L	--		0.002
\checkmark	1,2,3-Trichlorobenzene	ND	mg/L	--		0.002
$\sqrt{ }$	1,2,3-Trichloropropane	ND	mg/L	--		0.002
\checkmark	1,2,4-Trichlorobenzene	ND	mg/L	0.07	EPA Primary	0.002

Status	Contaminant	Results	Units	National Standards		Min. Detection Level
\checkmark	1,2-Dichlorobenzene	ND	mg/L	0.6	EPA Primary	0.001
\checkmark	1,2-Dichloroethane	ND	mg/L	0.005	EPA Primary	0.001
\checkmark	1,2-Dichloropropane	ND	mg/L	0.005	EPA Primary	0.002
\checkmark	1,3-Dichlorobenzene	ND	mg/L	--		0.001
\checkmark	1,3-Dichloropropane	ND	mg / L	--		0.002
$\sqrt{ }$	1,4-Dichlorobenzene	ND	mg / L	0.075	EPA Primary	0.001
$\sqrt{ }$	2,2-Dichloropropane	ND	mg/L	--		0.002
$\sqrt{ }$	2-Chlorotoluene	ND	mg / L	--		0.001
$\sqrt{0}$	4-Chlorotoluene	ND	mg / L	--		0.001
$\sqrt{0}$	Acetone	ND	mg / L	--		0.01
$\sqrt{ }$	Benzene	ND	mg/L	0.005	EPA Primary	0.001
$\sqrt{ }$	Bromobenzene	ND	mg/L	--		0.002
$\sqrt{0}$	Bromomethane	ND	mg / L	--		0.002
$\sqrt{ }$	Carbon Tetrachloride	ND	mg / L	0.005	EPA Primary	0.001
V	Chlorobenzene	ND	mg/L	0.1	EPA Primary	0.001
$\sqrt{ }$	Chloroethane	ND	mg/L	--		0.002
$\sqrt{0}$	Chloromethane	ND	mg/L	--		0.002
	cis-1,2-Dichloroethene	ND	mg/L	0.07	EPA Primary	0.002
V	cis-1,3-Dichloropropene	ND	mg/L	--		0.002
$\sqrt{ }$	DBCP	ND	mg / L	--		0.001
$\sqrt{0}$	Dibromomethane	ND	mg/L	--		0.002
\checkmark	Dichlorodifluoromethane	ND	mg/L	--		0.002
V	Dichloromethane	ND	mg / L	0.005	EPA Primary	0.002
$\sqrt{ }$	EDB	ND	mg / L	--		0.001
\checkmark	Ethylbenzene	ND	mg/L	0.7	EPA Primary	0.001
\checkmark	Methyl Tert Butyl Ether	ND	mg / L	--		0.004
\checkmark	Methyl-Ethyl Ketone	ND	mg/L	--		0.01
\checkmark	Styrene	ND	mg/L	0.1	EPA Primary	0.001
Page 4	of $6 \quad$ 8/28/2018 2:20:14				Watercheck w/PO	Sample: 887712

Status	Contaminant	Results	Units	National Standards		Min. Detection Level
\checkmark	Tetrachloroethene	ND	mg/L	0.005	EPA Primary	0.002
\checkmark	Tetrahydrofuran	ND	mg/L	--		0.01
$\sqrt{ }$	Toluene	ND	mg/L	1	EPA Primary	0.001
\checkmark	trans-1,2-Dichloroethene	ND	mg / L	0.1	EPA Primary	0.002
$\sqrt{ }$	trans-1,3-Dichloropropene	ND	mg/L	--		0.002
$\sqrt{0}$	Trichloroethene	ND	mg/L	0.005	EPA Primary	0.001
$\sqrt{0}$	Trichlorofluoromethane	ND	mg/L	--		0.002
$\sqrt{ }$	Vinyl Chloride	ND	mg/L	0.002	EPA Primary	0.001
$\sqrt{ }$	Xylenes (Total)	ND	mg/L	10	EPA Primary	0.001
	Organic Analytes - Others					
$\sqrt{ }$	2,4-D	ND	mg/L	0.07	EPA Primary	0.010
$\sqrt{ }$	Alachlor	ND	mg/L	0.002	EPA Primary	0.001
$\sqrt{ }$	Aldrin	ND	mg/L	--		0.002
$\sqrt{ }$	Atrazine	ND	mg/L	0.003	EPA Primary	0.002
$\sqrt{ }$	Chlordane	ND	mg/L	0.002	EPA Primary	0.001
$\sqrt{ }$	Dichloran	ND	mg/L	--		0.002
V	Dieldrin	ND	mg/L	--		0.001
$\sqrt{ }$	Endrin	ND	mg/L	0.002	EPA Primary	0.0001
$\sqrt{ }$	Heptachlor	ND	mg/L	0.0004	EPA Primary	0.0004
\checkmark	Heptachlor Epoxide	ND	mg/L	0.0002	EPA Primary	0.0001
V	Hexachlorobenzene	ND	mg/L	0.001	EPA Primary	0.0005
$\sqrt{ }$	Hexachlorocyclopentadiene	ND	mg/L	0.05	EPA Primary	0.001
\checkmark	Lindane	ND	mg/L	0.0002	EPA Primary	0.0002
\checkmark	Methoxychlor	ND	mg/L	0.04	EPA Primary	0.002
\checkmark	Pentachloronitrobenzene	ND	mg/L	--		0.002
\checkmark	Silvex 2,4,5-TP	ND	mg/L	0.05	EPA Primary	0.005
\checkmark	Simazine	ND	mg/L	0.004	EPA Primary	0.002
\checkmark	Total PCBs	ND	mg/L	0.0005	EPA Primary	0.0005
Page 5	of $6 \quad$ 8/28/2018 2:20:14 PM				Watercheck w/PO	Sample: 887712

$\left.\begin{array}{llllll}\text { Status } & \text { Contaminant } & \text { Results } & \text { Units } & \text { National Standards } & \text { Min. Detection Level } \\ \hline & \text { Toxaphene } & \mathrm{ND} & \mathrm{mg} / \mathrm{L} & 0.003 & \text { EPA Primary }\end{array}\right] 0.001$

We certify that the analyses performed for this report are accurate, and that the laboratory tests were conducted by methods approved by the U.S. Environmental Protection Agency or variations of these EPA methods.

These test results are intended to be used for informational purposes only and may not be used for regulatory compliance.
National Testing Laboratories, Ltd.
NATIONAL TESTING LABORATORIES, LTD
Client:

Ordered By:
Emery \& Garrett Groundwater Investigations,
LLC
56 Main Street
Meredith, NH 03253
ATTN: Emery \& Garrett Groundwater Inc.

Sample Number:	887710
Location:	MER-45-AR3
Type of Water:	Well Water
Collection Date and Time:	$8 / 9 / 2018$ 2:20 PM
Received Date and Time:	$8 / 10 / 201810: 05$ AM
Date Completed:	$8 / 28 / 2018$
Metals Filtered	
0.5hr ptest	

Definition and Legend

This informational water quality report compares the actual test result to national standards as defined in the EPA's Primary and Secondary Drinking Water Regulations.
Primary Standards: Are expressed as the maximum contaminant level (MCL) which is the highest level of contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary standards: Are non-enforceable guidelines regulating contaminants that may cause cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste, odor,or color) in drinking water. Individual states may choose to adopt them as enforceable standards.
Action levels: \quad Are defined in treatment techniques which are required processes intended to reduce the level of a contaminant in drinking water.
$\mathrm{mg} / \mathrm{L}(\mathrm{ppm}): \quad$ Unless otherwise indicated, results and standards are expressed as an amount in milligrams per liter or parts per million.

Minimum Detection The lowest level that the laboratory can detect a contaminant.
Level (MDL):
ND: The contaminant was not detected above the minimum detection level.
NA:
The contaminant was not analyzed.
The contaminant was not detected in the sample above the minimum detection level.
The contaminant was detected at or above the minimum detection level, but not above the referenced standard.

The contaminant was detected above the standard, which is not an EPA enforceable MCL.

The contaminant was detected above the EPA enforceable MCL.

These results may be invalid.

Status	Contaminant	Results	Units	National	Min. Detection Level	
	Microbiologicals					
	Total Coliform by P/A	No bacteria sample was submitted.				
Inorganic Analytes - Metals						
$\sqrt{ }$	Aluminum	ND	mg/L	0.2	EPA Secondary	0.1
$\sqrt{ }$	Arsenic	ND	mg/L	0.010	EPA Primary	0.005
$\sqrt{0}$	Barium	ND	mg/L	2	EPA Primary	0.30
$\sqrt{ }$	Cadmium	ND	mg/L	0.005	EPA Primary	0.002
	Calcium	31.4	mg/L	--		2.0
$\sqrt{ }$	Chromium	ND	mg/L	0.1	EPA Primary	0.010
$\sqrt{ }$	Copper	ND	mg/L	1.3	EPA Action Level	0.004
$\sqrt{ }$	Iron	ND	mg/L	0.3	EPA Secondary	0.020
$\sqrt{0}$	Lead	ND	mg/L	0.015	EPA Action Level	0.002
	Lithium	0.006	mg/L	--		0.001
-	Magnesium	5.89	mg/L	--		0.10
$\sqrt{ }$	Manganese	ND	mg/L	0.05	EPA Secondary	0.004
	Mercury	ND	mg/L	0.002	EPA Primary	0.001
\checkmark	Nickel	ND	mg/L	--		0.020
)	Potassium	3.4	mg/L	--		1.0
$\sqrt{ }$	Selenium	ND	mg/L	0.05	EPA Primary	0.020
-	Silica	17.5	mg/L	--		0.1
\checkmark	Silver	ND	mg/L	0.100	EPA Secondary	0.002
)	Sodium	125	mg/L	--		1
-	Strontium	0.302	mg/L	--		0.001
	Uranium	ND	mg/L	0.030	EPA Primary	0.001
	Zinc	0.058	mg/L	5	EPA Secondary	0.004
Physical Factors						
Alkalinity (Total as CaCO3)		22	mg/L	--		20
)	Hardness	100	mg/L	100	NTL Internal	10
Page 2	of $6 \quad$ 8/28/2018 2:20:10 PM	Product: Watercheck w/PO				Sample: 887710

Status	Contaminant	Results	Units	National Standards		Min. Detection Level
	pH	6.0	pH Units	6.5 to 8.5	EPA Secondary	
	Total Dissolved Solids	480	mg / L	500	EPA Secondary	20
$\sqrt{ }$	Turbidity	ND	NTU	1.0	EPA Action Level	0.1
Inorganic Analytes - Other						
$\sqrt{ }$	Bromide	ND	mg/L	--		0.5
Δ	Chloride	270.0	mg/L	250	EPA Secondary	5.0
$\sqrt{ }$	Fluoride	ND	mg/L	4.0	EPA Primary	0.5
	Nitrate as N	1.7	mg/L	10	EPA Primary	0.5
$\sqrt{ }$	Nitrite as N	ND	mg/L	1	EPA Primary	0.5
$\sqrt{0}$	Ortho Phosphate	ND	mg/L	--		2.0
	Sulfate	11.0	mg/L	250	EPA Secondary	5.0
Organic Analytes - Trihalomethanes						
$\sqrt{0}$	Bromodichloromethane	ND	mg/L	--		0.002
$\sqrt{ }$	Bromoform	ND	mg/L	--		0.004
$\sqrt{ }$	Chloroform	ND	mg/L	--		0.002
$\sqrt{ }$	Dibromochloromethane	ND	mg/L	--		0.004
$\sqrt{ }$	Total THMs	ND	mg/L	0.080	EPA Primary	0.002
Organic Analytes - Volatiles						
\checkmark	1,1,1,2-Tetrachloroethane	ND	mg/L	--		0.002
V	1,1,1-Trichloroethane	ND	mg/L	0.2	EPA Primary	0.001
\checkmark	1,1,2,2-Tetrachloroethane	ND	mg/L	--		0.002
\checkmark	1,1,2-Trichloroethane	ND	mg/L	0.005	EPA Primary	0.002
\checkmark	1,1-Dichloroethane	ND	mg/L	--		0.002
\checkmark	1,1-Dichloroethene	ND	mg/L	0.007	EPA Primary	0.001
\checkmark	1,1-Dichloropropene	ND	mg/L	--		0.002
\checkmark	1,2,3-Trichlorobenzene	ND	mg/L	--		0.002
\checkmark	1,2,3-Trichloropropane	ND	mg/L	--		0.002
\checkmark	1,2,4-Trichlorobenzene	ND	mg/L	0.07	EPA Primary	0.002

Status	Contaminant	Results	Units	National Standards		Min. Detection Level
\checkmark	1,2-Dichlorobenzene	ND	mg/L	0.6	EPA Primary	0.001
\checkmark	1,2-Dichloroethane	ND	mg/L	0.005	EPA Primary	0.001
\checkmark	1,2-Dichloropropane	ND	mg/L	0.005	EPA Primary	0.002
\checkmark	1,3-Dichlorobenzene	ND	mg/L	--		0.001
\checkmark	1,3-Dichloropropane	ND	mg / L	--		0.002
$\sqrt{ }$	1,4-Dichlorobenzene	ND	mg / L	0.075	EPA Primary	0.001
\checkmark	2,2-Dichloropropane	ND	mg/L	--		0.002
$\sqrt{0}$	2-Chlorotoluene	ND	mg / L	--		0.001
\checkmark	4-Chlorotoluene	ND	mg / L	--		0.001
$\sqrt{ }$	Acetone	ND	mg / L	--		0.01
$\sqrt{0}$	Benzene	ND	mg/L	0.005	EPA Primary	0.001
$\sqrt{ }$	Bromobenzene	ND	mg / L	--		0.002
\checkmark	Bromomethane	ND	mg / L	--		0.002
$\sqrt{ }$	Carbon Tetrachloride	ND	mg / L	0.005	EPA Primary	0.001
\checkmark	Chlorobenzene	ND	mg / L	0.1	EPA Primary	0.001
$\sqrt{0}$	Chloroethane	ND	mg/L	--		0.002
$\sqrt{0}$	Chloromethane	ND	mg/L	--		0.002
\checkmark	cis-1,2-Dichloroethene	ND	mg/L	0.07	EPA Primary	0.002
\checkmark	cis-1,3-Dichloropropene	ND	mg/L	--		0.002
\checkmark	DBCP	ND	mg/L	--		0.001
$\sqrt{ }$	Dibromomethane	ND	mg/L	--		0.002
\checkmark	Dichlorodifluoromethane	ND	mg/L	--		0.002
\checkmark	Dichloromethane	ND	mg/L	0.005	EPA Primary	0.002
\checkmark	EDB	ND	mg/L	--		0.001
\checkmark	Ethylbenzene	ND	mg / L	0.7	EPA Primary	0.001
\checkmark	Methyl Tert Butyl Ether	ND	mg/L	--		0.004
\checkmark	Methyl-Ethyl Ketone	ND	mg/L	--		0.01
\checkmark	Styrene	ND	mg/L	0.1	EPA Primary	0.001
Page 4	of 6 8/28/2018 2:20:10				Watercheck w/PO	Sample: 887710

Status	Contaminant	Results	Units	National Standards		Min. Detection Level
$\sqrt{ }$	Tetrachloroethene	ND	mg/L	0.005	EPA Primary	0.002
\checkmark	Tetrahydrofuran	ND	mg/L	--		0.01
$\sqrt{ }$	Toluene	ND	mg/L	1	EPA Primary	0.001
\checkmark	trans-1,2-Dichloroethene	ND	mg/L	0.1	EPA Primary	0.002
\checkmark	trans-1,3-Dichloropropene	ND	mg/L	--		0.002
\checkmark	Trichloroethene	ND	mg/L	0.005	EPA Primary	0.001
$\sqrt{ }$	Trichlorofluoromethane	ND	mg / L	--		0.002
\checkmark	Vinyl Chloride	ND	mg/L	0.002	EPA Primary	0.001
V	Xylenes (Total)	ND	mg/L	10	EPA Primary	0.001
	Organic Analytes - Others					
V	2,4-D	ND	mg/L	0.07	EPA Primary	0.010
$\sqrt{ }$	Alachlor	ND	mg/L	0.002	EPA Primary	0.001
V	Aldrin	ND	mg/L	--		0.002
$\sqrt{ }$	Atrazine	ND	mg/L	0.003	EPA Primary	0.002
$\sqrt{ }$	Chlordane	ND	mg/L	0.002	EPA Primary	0.001
$\sqrt{ }$	Dichloran	ND	mg/L	--		0.002
$\sqrt{0}$	Dieldrin	ND	mg/L	--		0.001
$\sqrt{0}$	Endrin	ND	mg/L	0.002	EPA Primary	0.0001
\checkmark	Heptachlor	ND	mg/L	0.0004	EPA Primary	0.0004
\checkmark	Heptachlor Epoxide	ND	mg/L	0.0002	EPA Primary	0.0001
$\sqrt{0}$	Hexachlorobenzene	ND	mg/L	0.001	EPA Primary	0.0005
\checkmark	Hexachlorocyclopentadiene	ND	mg/L	0.05	EPA Primary	0.001
\checkmark	Lindane	ND	mg/L	0.0002	EPA Primary	0.0002
\checkmark	Methoxychlor	ND	mg/L	0.04	EPA Primary	0.002
\checkmark	Pentachloronitrobenzene	ND	mg/L	--		0.002
\checkmark	Silvex 2,4,5-TP	ND	mg/L	0.05	EPA Primary	0.005
\checkmark	Simazine	ND	mg/L	0.004	EPA Primary	0.002
\checkmark	Total PCBs	ND	mg/L	0.0005	EPA Primary	0.0005
Page 5	of 6 8/28/2018 2:20:10 PM				Watercheck w/PO	Sample: 887710

$\left.\begin{array}{llllll}\text { Status } & \text { Contaminant } & \text { Results } & \text { Units } & \text { National Standards } & \text { Min. Detection Level } \\ \hline & \text { Toxaphene } & \mathrm{ND} & \mathrm{mg} / \mathrm{L} & 0.003 & \text { EPA Primary }\end{array}\right] 0.001$

We certify that the analyses performed for this report are accurate, and that the laboratory tests were conducted by methods approved by the U.S. Environmental Protection Agency or variations of these EPA methods.

These test results are intended to be used for informational purposes only and may not be used for regulatory compliance.
National Testing Laboratories, Ltd.
NATIONAL TESTING LABORATORIES, LTD

APPENDIX E

WATER QUALITY RESULTS FROM SURFACE WATER

Client:
MVD- 4\&5 AR

Ordered By:
Emery \& Garrett Groundwater Investigations,
LLC
56 Main Street
PO Box 1578
Meredith, NH 03253

Sample Number:	884662
Location:	Merrimack River
Type of Water:	Other
Collection Date and Time:	$5 / 7 / 2018$ 1:30 PM
Received Date and Time:	$5 / 10 / 201811: 50$ AM
Date Completed:	$5 / 18 / 2018$
Metals Not Filtered High Flow	

Definition and Legend

This informational water quality report compares the actual test result to national standards as defined in the EPA's Primary and Secondary Drinking Water Regulations.
Primary Standards: Are expressed as the maximum contaminant level (MCL) which is the highest level of contaminant that is allowed in drinking water. MCLs are enforceable standards.
Secondary standards: Are non-enforceable guidelines regulating contaminants that may cause cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste, odor,or color) in drinking water. Individual states may choose to adopt them as enforceable standards.
Action levels: \quad Are defined in treatment techniques which are required processes intended to reduce the level of a contaminant in drinking water.
mg/L (ppm): Unless otherwise indicated, results and standards are expressed as an amount in milligrams per liter or parts per million.
Minimum Detection The lowest level that the laboratory can detect a contaminant.
Level (MDL):
ND:
The contaminant was not detected above the minimum detection level.
NA:
The contaminant was not analyzed.
The contaminant was not detected in the sample above the minimum detection level.
The contaminant was detected at or above the minimum detection level, but not above the referenced standard.
The contaminant was detected above the standard, which is not an EPA enforceable MCL.
The contaminant was detected above the EPA enforceable MCL.
These results may be invalid.

Status	Contaminant	Results	Units	Nationa		etection Level
	Microbiologicals					
Total Coliform by P/A		No bacteria sample was submitted.				
Inorganic Analytes - Metals						
	Aluminum	0.3	mg/L	0.2	EPA Secondary	0.1
Arsenic		ND	mg/L	0.010	EPA Primary	0.005
Barium		ND	mg/L	2	EPA Primary	0.30
Cadmium		ND	mg/L	0.005	EPA Primary	0.002
Calcium		2.8	mg/L	--	2.0	
Chromium		ND	mg/L	0.1	EPA Primary	0.010
Copper		ND	mg/L	1.3	EPA Action Level	0.004
Iron		0.521	mg/L	0.3	EPA Secondary	0.020
Lead		ND	mg/L	0.015	EPA Action Level	0.002
Lithium		0.001	mg/L	--		0.001
Magnesium		0.57	mg/L	--		0.10
Manganese		0.089	mg/L	0.05	EPA Secondary	0.004
Mercury		ND	mg/L	0.002	EPA Primary	0.001
Nickel		ND	mg/L	--		0.020
Potassium		ND	mg/L	--		1.0
Selenium		ND	mg/L	0.05	EPA Primary	0.020
Silica		5.1	mg/L	--		0.1
Silver		ND	mg/L	0.100	EPA Secondary	0.002
Sodium		9	mg / L	--		1
Strontium		0.022	mg/L	--		0.001
Uranium		ND	mg/L	0.030	EPA Primary	0.001
Zinc		0.006	mg/L	5	EPA Secondary	0.004
Physical Factors						
	Alkalinity (Total as CaCO 3$)$	ND	mg/L	--		20
\checkmark	Hardness	ND	mg/L	100	NTL Internal	10
Page 2	of 6 5/18/2018 4:26:09 PM				Watercheck w/PO	Sample: 884662

Status	Contaminant	Results	Units	National Standards	Min. Detection Level	
	pH	6.3	pH Units	6.5 to 8.5	EPA Secondary	
	Total Dissolved Solids	30	mg / L	500	EPA Secondary	20
∇	Turbidity	1.5	NTU	1.0	EPA Action Level	0.1
	Inorganic Analytes - Other					
$\sqrt{ }$	Bromide	ND	mg/L	--		0.5
,	Chloride	12.0	mg/L	250	EPA Secondary	5.0
$\sqrt{ }$	Fluoride	ND	mg/L	4.0	EPA Primary	0.5
$\sqrt{ }$	Nitrate as N	ND	mg/L	10	EPA Primary	0.5
$\sqrt{0}$	Nitrite as N	ND	mg/L	1	EPA Primary	0.5
$\sqrt{ }$	Ortho Phosphate	ND	mg/L	--		2.0
$\sqrt{7}$	Sulfate	ND	mg/L	250	EPA Secondary	5.0
Organic Analytes - Trihalomethanes						
$\sqrt{ }$	Bromodichloromethane	ND	mg/L	--		0.002
$\sqrt{ }$	Bromoform	ND	mg/L	--		0.004
$\sqrt{0}$	Chloroform	ND	mg/L	--		0.002
$\sqrt{ }$	Dibromochloromethane	ND	mg/L	--		0.004
$\sqrt{0}$	Total THMs	ND	mg/L	0.080	EPA Primary	0.002
Organic Analytes - Volatiles						
$\sqrt{ }$	1,1,1,2-Tetrachloroethane	ND	mg/L	--		0.002
V	1,1,1-Trichloroethane	ND	mg/L	0.2	EPA Primary	0.001
V	1,1,2,2-Tetrachloroethane	ND	mg/L	--		0.002
\checkmark	1,1,2-Trichloroethane	ND	mg/L	0.005	EPA Primary	0.002
\checkmark	1,1-Dichloroethane	ND	mg/L	--		0.002
$\sqrt{ }$	1,1-Dichloroethene	ND	mg/L	0.007	EPA Primary	0.001
\checkmark	1,1-Dichloropropene	ND	mg/L	--		0.002
\checkmark	1,2,3-Trichlorobenzene	ND	mg / L	--		0.002
\checkmark	1,2,3-Trichloropropane	ND	mg/L	--		0.002
\checkmark	1,2,4-Trichlorobenzene	ND	mg/L	0.07	EPA Primary	0.002

Status	Contaminant	Results	Units	National Standards		Min. Detection Level
$\sqrt{ }$	1,2-Dichlorobenzene	ND	mg/L	0.6	EPA Primary	0.001
\checkmark	1,2-Dichloroethane	ND	mg/L	0.005	EPA Primary	0.001
\checkmark	1,2-Dichloropropane	ND	mg/L	0.005	EPA Primary	0.002
$\sqrt{ }$	1,3-Dichlorobenzene	ND	mg/L	--		0.001
\checkmark	1,3-Dichloropropane	ND	mg / L	--		0.002
$\sqrt{ }$	1,4-Dichlorobenzene	ND	mg/L	0.075	EPA Primary	0.001
\checkmark	2,2-Dichloropropane	ND	mg/L	--		0.002
V	2-Chlorotoluene	ND	mg / L	--		0.001
$\sqrt{0}$	4-Chlorotoluene	ND	mg / L	--		0.001
$\sqrt{0}$	Acetone	ND	mg/L	--		0.01
$\sqrt{ }$	Benzene	ND	mg/L	0.005	EPA Primary	0.001
$\sqrt{0}$	Bromobenzene	ND	mg / L	--		0.002
$\sqrt{0}$	Bromomethane	ND	mg/L	--		0.002
$\sqrt{0}$	Carbon Tetrachloride	ND	mg/L	0.005	EPA Primary	0.001
$\sqrt{0}$	Chlorobenzene	ND	mg/L	0.1	EPA Primary	0.001
$\sqrt{0}$	Chloroethane	ND	mg / L	--		0.002
$\sqrt{ }$	Chloromethane	ND	mg/L	--		0.002
\checkmark	cis-1,2-Dichloroethene	ND	mg/L	0.07	EPA Primary	0.002
V	cis-1,3-Dichloropropene	ND	mg/L	--		0.002
$\sqrt{0}$	DBCP	ND	mg/L	--		0.001
$\sqrt{ }$	Dibromomethane	ND	mg/L	--		0.002
\checkmark	Dichlorodifluoromethane	ND	mg/L	--		0.002
\checkmark	Dichloromethane	ND	mg / L	0.005	EPA Primary	0.002
\checkmark	EDB	ND	mg / L	--		0.001
\checkmark	Ethylbenzene	ND	mg / L	0.7	EPA Primary	0.001
\checkmark	Methyl Tert Butyl Ether	ND	mg/L	--		0.004
\checkmark	Methyl-Ethyl Ketone	ND	mg / L	--		0.01
\checkmark	Styrene	ND	mg/L	0.1	EPA Primary	0.001
Page 4	of $6 \quad$ 5/18/2018 4:26:09				Watercheck w/PO	Sample: 884662

Status	Contaminant	Results	Units	National Standards		Min. Detection Level
\checkmark	Tetrachloroethene	ND	mg/L	0.005	EPA Primary	0.002
$\sqrt{0}$	Tetrahydrofuran	ND	mg/L	--		0.01
$\sqrt{0}$	Toluene	ND	mg/L	1	EPA Primary	0.001
\checkmark	trans-1,2-Dichloroethene	ND	mg/L	0.1	EPA Primary	0.002
$\sqrt{0}$	trans-1,3-Dichloropropene	ND	mg/L	--		0.002
\checkmark	Trichloroethene	ND	mg/L	0.005	EPA Primary	0.001
V	Trichlorofluoromethane	ND	mg/L	--		0.002
$\sqrt{ }$	Vinyl Chloride	ND	mg/L	0.002	EPA Primary	0.001
$\sqrt{0}$	Xylenes (Total)	ND	mg/L	10	EPA Primary	0.001
Organic Analytes - Others						
$\sqrt{ }$	2,4-D	ND	mg/L	0.07	EPA Primary	0.010
$\sqrt{ }$	Alachlor	ND	mg/L	0.002	EPA Primary	0.001
$\sqrt{ }$	Aldrin	ND	mg/L	--		0.002
$\sqrt{0}$	Atrazine	ND	mg/L	0.003	EPA Primary	0.002
V	Chlordane	ND	mg/L	0.002	EPA Primary	0.001
$\sqrt{ }$	Dichloran	ND	mg/L	--		0.002
$\sqrt{0}$	Dieldrin	ND	mg/L	--		0.001
\sqrt{V}	Endrin	ND	mg/L	0.002	EPA Primary	0.0001
$\sqrt{0}$	Heptachlor	ND	mg/L	0.0004	EPA Primary	0.0004
\checkmark	Heptachlor Epoxide	ND	mg/L	0.0002	EPA Primary	0.0001
V	Hexachlorobenzene	ND	mg/L	0.001	EPA Primary	0.0005
\checkmark	Hexachlorocyclopentadiene	ND	mg/L	0.05	EPA Primary	0.001
V	Lindane	ND	mg/L	0.0002	EPA Primary	0.0002
\checkmark	Methoxychlor	ND	mg/L	0.04	EPA Primary	0.002
\checkmark	Pentachloronitrobenzene	ND	mg/L	--		0.002
\checkmark	Silvex $2,4,5-\mathrm{TP}$	ND	mg/L	0.05	EPA Primary	0.005
\checkmark	Simazine	ND	mg/L	0.004	EPA Primary	0.002
\checkmark	Total PCBs	ND	mg/L	0.0005	EPA Primary	0.0005
Page 5	of 6 5/18/2018 4.26.09 PM			Product: Watercheck w/PO		Sample: 884662

$\left.\begin{array}{llllll}\text { Status } & \text { Contaminant } & \text { Results } & \text { Units } & \text { National Standards } & \text { Min. Detection Level } \\ \hline & \text { Toxaphene } & \mathrm{ND} & \mathrm{mg} / \mathrm{L} & 0.003 & \text { EPA Primary }\end{array}\right] 0.001$

We certify that the analyses performed for this report are accurate, and that the laboratory tests were conducted by methods approved by the U.S. Environmental Protection Agency or variations of these EPA methods.

These test results are intended to be used for informational purposes only and may not be used for regulatory compliance.
National Testing Laboratories, Ltd.
NATIONAL TESTING LABORATORIES, LTD

Client:
MVD- 4\&5 AR

Ordered By:
Emery \& Garrett Groundwater Investigations,
LLC
56 Main Street
PO Box 1578
Meredith, NH 03253

Sample Number:	884663
Location:	Baboosic Brook
Type of Water:	Other
Collection Date and Time:	5/7/2018 3:00 PM
Received Date and Time: Date Completed: 5/10/2018 11:50 AM Metals Not Filtered High Flow	$5 / 18 / 2018$

Definition and Legend

This informational water quality report compares the actual test result to national standards as defined in the EPA's Primary and Secondary Drinking Water Regulations.
Primary Standards: Are expressed as the maximum contaminant level (MCL) which is the highest level of contaminant that is allowed in drinking water. MCLs are enforceable standards.
Secondary standards: Are non-enforceable guidelines regulating contaminants that may cause cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste, odor,or color) in drinking water. Individual states may choose to adopt them as enforceable standards.
Action levels: \quad Are defined in treatment techniques which are required processes intended to reduce the level of a contaminant in drinking water.
mg/L (ppm): Unless otherwise indicated, results and standards are expressed as an amount in milligrams per liter or parts per million.
Minimum Detection The lowest level that the laboratory can detect a contaminant.
Level (MDL):
ND:
The contaminant was not detected above the minimum detection level.
NA:
The contaminant was not analyzed.
The contaminant was not detected in the sample above the minimum detection level.
The contaminant was detected at or above the minimum detection level, but not above the referenced standard.
The contaminant was detected above the standard, which is not an EPA enforceable MCL.
The contaminant was detected above the EPA enforceable MCL.
These results may be invalid.

Status	Contaminant	Results	Units	National		etection Level
	Microbiologicals					
Total Coliform by P/A		No bacteria sample was submitted.				
Inorganic Analytes - Metals						
\checkmark	Aluminum	ND	mg/L	0.2	EPA Secondary	0.1
Arsenic		ND	mg/L	0.010	EPA Primary	0.005
Barium		ND	mg/L	2	EPA Primary	0.30
Cadmium		ND	mg/L	0.005	EPA Primary	0.002
Calcium		8.3	mg/L	--	2.0	
Chromium		ND	mg/L	0.1	EPA Primary	0.010
Copper		ND	mg/L	1.3	EPA Action Level	0.004
Iron		0.801	mg/L	0.3	EPA Secondary	0.020
Lead		ND	mg/L	0.015	EPA Action Level	0.002
Lithium		ND	mg/L	--		0.001
Magnesium		1.80	mg/L	--		0.10
Manganese		0.121	mg/L	0.05	EPA Secondary	0.004
Mercury		ND	mg/L	0.002	EPA Primary	0.001
Nickel		ND	mg/L	--		0.020
Potassium		1.5	mg/L	--		1.0
Selenium		ND	mg/L	0.05	EPA Primary	0.020
Silica		3.3	mg/L	--		0.1
Silver		ND	mg/L	0.100	EPA Secondary	0.002
Sodium		32	mg/L	--		1
Strontium		0.082	mg/L	--		0.001
Uranium		ND	mg/L	0.030	EPA Primary	0.001
	Zinc	ND	mg/L	5	EPA Secondary	0.004
Physical Factors						
	Alkalinity (Total as CaCO3)	ND	mg/L	--		20
Hardness		28	mg/L	100	NTL Internal	10
Page 2	of $6 \quad 5 / 18 / 2018$ 4:26:10 PM			Product: Watercheck w/PO		Sample: 884663

Status	Contaminant	Results	Units	National Standards	Min. Detection Level	
\checkmark	pH	7.6	pH Units	6.5 to 8.5	EPA Secondary	
	Total Dissolved Solids	99	mg/L	500	EPA Secondary	20
	Turbidity	0.7	NTU	1.0	EPA Action Level	0.1
Inorganic Analytes - Other						
\checkmark	Bromide	ND	mg/L	--		0.5
	Chloride	51.0	mg/L	250	EPA Secondary	5.0
\checkmark	Fluoride	ND	mg/L	4.0	EPA Primary	0.5
$\sqrt{ }$	Nitrate as N	ND	mg/L	10	EPA Primary	0.5
	Nitrite as N	ND	mg/L	1	EPA Primary	0.5
\checkmark	Ortho Phosphate	ND	mg/L	--		2.0
,	Sulfate	ND	mg/L	250	EPA Secondary	5.0
Organic Analytes - Trihalomethanes						
$\sqrt{ }$	Bromodichloromethane	ND	mg/L	--		0.002
$\sqrt{ }$	Bromoform	ND	mg/L	--		0.004
\checkmark	Chloroform	ND	mg/L	--		0.002
	Dibromochloromethane	ND	mg/L	--		0.004
$\sqrt{ }$	Total THMs	ND	mg/L	0.080	EPA Primary	0.002
Organic Analytes - Volatiles						
\checkmark	1,1,1,2-Tetrachloroethane	ND	mg/L	--		0.002
\checkmark	1,1,1-Trichloroethane	ND	mg/L	0.2	EPA Primary	0.001
\checkmark	1,1,2,2-Tetrachloroethane	ND	mg/L	--		0.002
\checkmark	1,1,2-Trichloroethane	ND	mg/L	0.005	EPA Primary	0.002
\checkmark	1,1-Dichloroethane	ND	mg/L	--		0.002
\checkmark	1,1-Dichloroethene	ND	mg/L	0.007	EPA Primary	0.001
\checkmark	1,1-Dichloropropene	ND	mg/L	--		0.002
	1,2,3-Trichlorobenzene	ND	mg/L	--		0.002
\checkmark	1,2,3-Trichloropropane	ND	mg/L	--		0.002
$\sqrt{ }$	1,2,4-Trichlorobenzene	ND	mg/L	0.07	EPA Primary	0.002

Status	Contaminant	Results	Units	National Standards		Min. Detection Level
$\sqrt{ }$	1,2-Dichlorobenzene	ND	mg/L	0.6	EPA Primary	0.001
$\sqrt{ }$	1,2-Dichloroethane	ND	mg/L	0.005	EPA Primary	0.001
\checkmark	1,2-Dichloropropane	ND	mg/L	0.005	EPA Primary	0.002
\checkmark	1,3-Dichlorobenzene	ND	mg/L	--		0.001
\checkmark	1,3-Dichloropropane	ND	mg/L	--		0.002
$\sqrt{0}$	1,4-Dichlorobenzene	ND	mg / L	0.075	EPA Primary	0.001
\checkmark	2,2-Dichloropropane	ND	mg/L	--		0.002
V	2-Chlorotoluene	ND	mg/L	--		0.001
$\sqrt{0}$	4-Chlorotoluene	ND	mg/L	--		0.001
$\sqrt{ }$	Acetone	ND	mg/L	--		0.01
$\sqrt{0}$	Benzene	ND	mg/L	0.005	EPA Primary	0.001
$\sqrt{0}$	Bromobenzene	ND	mg/L	--		0.002
$\sqrt{0}$	Bromomethane	ND	mg/L	--		0.002
$\sqrt{ }$	Carbon Tetrachloride	ND	mg/L	0.005	EPA Primary	0.001
$\sqrt{ }$	Chlorobenzene	ND	mg/L	0.1	EPA Primary	0.001
$\sqrt{0}$	Chloroethane	ND	mg/L	--		0.002
$\sqrt{ }$	Chloromethane	ND	mg/L	--		0.002
$\sqrt{ }$	cis-1,2-Dichloroethene	ND	mg/L	0.07	EPA Primary	0.002
\checkmark	cis-1,3-Dichloropropene	ND	mg/L	--		0.002
$\sqrt{ }$	DBCP	ND	mg/L	--		0.001
$\sqrt{ }$	Dibromomethane	ND	mg/L	--		0.002
$\sqrt{ }$	Dichlorodifluoromethane	ND	mg/L	--		0.002
\checkmark	Dichloromethane	ND	mg/L	0.005	EPA Primary	0.002
\checkmark	EDB	ND	mg/L	--		0.001
\checkmark	Ethylbenzene	ND	mg/L	0.7	EPA Primary	0.001
\checkmark	Methyl Tert Butyl Ether	ND	mg/L	--		0.004
\checkmark	Methyl-Ethyl Ketone	ND	mg/L	--		0.01
V	Styrene	ND	mg/L	0.1	EPA Primary	0.001
Page 4	of $6 \quad 5 / 18 / 2018$ 4:26:10				Watercheck w/PO	Sample: 884663

Status	Contaminant	Results	Units	National Standards		Min. Detection Level
$\sqrt{ }$	Tetrachloroethene	ND	mg/L	0.005	EPA Primary	0.002
\checkmark	Tetrahydrofuran	ND	mg/L	--		0.01
$\sqrt{0}$	Toluene	ND	mg/L	1	EPA Primary	0.001
$\sqrt{0}$	trans-1,2-Dichloroethene	ND	mg/L	0.1	EPA Primary	0.002
$\sqrt{ }$	trans-1,3-Dichloropropene	ND	mg / L	--		0.002
$\sqrt{0}$	Trichloroethene	ND	mg/L	0.005	EPA Primary	0.001
$\sqrt{0}$	Trichlorofluoromethane	ND	mg/L	--		0.002
V	Vinyl Chloride	ND	mg / L	0.002	EPA Primary	0.001
$\sqrt{ }$	Xylenes (Total)	ND	mg/L	10	EPA Primary	0.001
Organic Analytes - Others						
$\sqrt{ }$	2,4-D	ND	mg / L	0.07	EPA Primary	0.010
$\sqrt{ }$	Alachlor	ND	mg / L	0.002	EPA Primary	0.001
$\sqrt{ }$	Aldrin	ND	mg / L	--		0.002
V	Atrazine	ND	mg / L	0.003	EPA Primary	0.002
$\sqrt{ }$	Chlordane	ND	mg/L	0.002	EPA Primary	0.001
$\sqrt{ }$	Dichloran	ND	mg/L	--		0.002
$\sqrt{7}$	Dieldrin	ND	mg/L	--		0.001
$\sqrt{ }$	Endrin	ND	mg / L	0.002	EPA Primary	0.0001
$\sqrt{ }$	Heptachlor	ND	mg/L	0.0004	EPA Primary	0.0004
$\sqrt{ }$	Heptachlor Epoxide	ND	mg/L	0.0002	EPA Primary	0.0001
$\sqrt{7}$	Hexachlorobenzene	ND	mg/L	0.001	EPA Primary	0.0005
$\sqrt{7}$	Hexachlorocyclopentadiene	ND	mg/L	0.05	EPA Primary	0.001
$\sqrt{ }$	Lindane	ND	mg/L	0.0002	EPA Primary	0.0002
\checkmark	Methoxychlor	ND	mg/L	0.04	EPA Primary	0.002
$\sqrt{7}$	Pentachloronitrobenzene	ND	mg/L	--		0.002
$\sqrt{7}$	Silvex 2,4,5-TP	ND	mg/L	0.05	EPA Primary	0.005
V	Simazine	ND	mg/L	0.004	EPA Primary	0.002
\checkmark	Total PCBs	ND	mg/L	0.0005	EPA Primary	0.0005
Page 5	of $6 \quad 5 / 18 / 2018$ 4:26:10 PM				Watercheck w/PO	Sample: 884663

$\left.\begin{array}{llllll}\text { Status } & \text { Contaminant } & \text { Results } & \text { Units } & \text { National Standards } & \text { Min. Detection Level } \\ \hline & \text { Toxaphene } & \mathrm{ND} & \mathrm{mg} / \mathrm{L} & 0.003 & \text { EPA Primary }\end{array}\right] 0.001$

We certify that the analyses performed for this report are accurate, and that the laboratory tests were conducted by methods approved by the U.S. Environmental Protection Agency or variations of these EPA methods.

These test results are intended to be used for informational purposes only and may not be used for regulatory compliance.
National Testing Laboratories, Ltd.
NATIONAL TESTING LABORATORIES, LTD

[^0]: ${ }^{1}$ Recharge that is available form annual precipitation.
 ${ }^{2}$ Estimated at approximately 16% of total available yield capacity.

[^1]: ${ }^{3}$ Except very low background levels of PFOA and PFAS.

[^2]: ${ }^{4}$ Pipeline Route Merrimack 1 will stay on MVD Property on the west side of the railroad tracks but will need to cross beneath the railroad tracks operated by Pam Am Railways and then run across a private parcel (Longa Parcel; Tax Map 005D-2, Lot 000009) where the intake structure will be located.

[^3]: NT = not tested
 $\mathrm{ND}=$ not detected

[^4]: Generally, well-sorted, medium to coarse sands, varying amounts of gravel (see log for details). Generally, poorly-sorted (well-graded), fine to coarse sands with pebbles to cobbles (see log).

